

Search

Dominic Steinhöfel

Dominic Steinhöfel

	
Home

	
Publications

	
Projects

	
Teaching

	
Talks

	
Events

	
Posts

	
Contact

	
CV

	

	

Light

Dark

Automatic

Extract Inkscape Layers to PDF files for LaTeX Beamer Presentations

Last updated on
Aug 5, 2020

5 min read

tools

I like doing fancy presentations with little text (but in the titles, I heard that’s called “power titles” occasionally) but with a lot of graphics and animations. As a computer scientist who uses a lot of math stuff in his work, I of course use LaTeX even for creating presentations for its math features, although, in my opinion, LaTeX is not the perfect technology for making slides. My animations and graphics were done in TikZ so far, with all advantages and downsides: While on the one hand, you can use all the macros of your main document and profit from the wide range of powerfull TikZ/PGF libraries, TikZ animations can be quite brittle and hard to create and maintain.

After discovering the great textext plugin for Inkscape which lets you render LaTeX code from within Inkscape which can be updated (and re-rendered) after creation and allows for the inclusion of a LaTeX preamble, I decided to create graphics for my presentations in Inkscape. In practice, I create a document with the same size as my PDF slides and include a subset of my macros, maybe with a small set of additional definitions for fonts etc., in the preambles of my LaTeX objects. Animations are realized via Inkscape layers. Then, I toggled the layers according to my animation plan and exported several PDFs which I then included via a for-loop in my LaTeX beamer presentation. While that already constitutes a big step forward to WYSIWYG graphics / animations creation for LaTeX, this last step of manually exporting multiple PDFs is quite cumbersome, especially if you change something in your graphics. That’s where my small python script steps in.
The python script I wrote lets you annotate your Inkscape layers with LaTeX Beamer overlay specifications like <1,3-6,7-> — just append that to the name of a layer, and my script will automatically extract several PDF files where at each step, those annotated layers whose overlay range does not include the step are set to be invisible. Now, when you update something in your graphics and animations, just run the script to re-generate your animations. That’s the workflow I wanted to have.

In contrast to other Inkscape-based scripts / workflows like Inksclides etc., the goal of my script is not creating whole presentations from Inkscape vector graphics documents. You could probably do that (e.g., merge the generated PDFs after creation), but inserting a frame in the middle is already quite difficult since you have to update all your layer overlay annotations afterward. It’s really just for making animations within a single frame, but for that purpose, I could not find anything more suitable so far.

So here’s the script, and here a sample SVG that you can use as an example. Enjoy!

#!/usr/bin/python3
import xml.etree.ElementTree as ET
import re
import sys
import os
import pyperclip
from pathlib import Path
from subprocess import call

###
This script extracts "layers" for usage in LaTeX presentations
from inkscape SVG files. For this, append a LaTeX overlay specification
to the label of the layer, e.g., "1,2-5,3,17-", which you surround by
either angle or square brackets. Then, call this script with the name
of the SVG file as argument (works also with a path). It will export
multiple PDF files "...-step-N.pdf" in the same directory as the SVG
file. After execution, the script shows instructions of how to use the
generated PDF animation slides in LaTeX and copies the for loop doing
the task to the system clipboard.
#
Requirements:
- inkscape
- pyperclip library ("pip3 install pyperclip")
###

ns = {'svg': 'http://www.w3.org/2000/svg',
 'inkscape': 'http://www.inkscape.org/namespaces/inkscape'}

class OverlayRange:
 def __init__(self, start, end):
 self.start = int(start)
 self.end = int(end)

 def __str__(self):
 if (self.end == -1):
 return "range(" + str(self.start) + "-" + ")"
 else:
 return "range(" + str(self.start) + "-" + str(self.end) + ")"

 def max(self):
 if (self.end > self.start):
 return self.end
 else:
 return self.start

 def setMax(self, max):
 if (self.end == -1):
 self.end = max

 def visibleAt(self, step):
 return (self.start <= step and step <= self.end)

 @classmethod
 def fromStartOnly(cls, start):
 return cls(start, -1)

def parseOverlayRange(string):
 arr = string.split('-')
 if (len(arr) == 1):
 return OverlayRange(arr[0], arr[0])
 elif (len(arr) == 2 and arr[1] == ''):
 return OverlayRange.fromStartOnly(arr[0])
 elif (len(arr) == 2):
 return OverlayRange(arr[0], arr[1])

class Layer:
 def __init__(self, label, element):
 self.label = label
 self.element = element
 self.ranges = []

 def addRange(self, therange):
 self.ranges.append(therange)

 def maxRange(self):
 return max(map(lambda r: r.max(), self.ranges))

 def visibleAt(self, step):
 for therange in self.ranges:
 if (therange.visibleAt(step)):
 return True
 return False

def toNS(elem, namespace):
 return '{' + ns.get(namespace) + '}' + elem

if (len(sys.argv) < 2):
 print('Expecting input SVG file as argument')

inputfile = sys.argv[1]
outprefix = inputfile.split('.svg')[0]

tree = ET.parse(inputfile)
root = tree.getroot()

layers = []

for elem in tree.iter():
 if (elem.tag != toNS('g', 'svg')):
 continue

 label = elem.get(toNS('label', 'inkscape'))
 if (label == None):
 continue

 groupmode = elem.get(toNS('groupmode', 'inkscape'))
 if (groupmode == None or groupmode != 'layer'):
 continue

 regex = r"^([^(<\[)]*)\W+(?:<|\[)([0-9]+(?:-(?:[0-9]+)?)?(?:,[0-9]+(?:-(?:[0-9]+)?)?)*)(?:>|\])$"
 m = re.search(regex, label)
 if (m == None):
 continue

 layer = Layer(m.group(1), elem)
 for theRange in m.group(2).split(','):
 layer.addRange(parseOverlayRange(theRange))

 layers.append(layer)

maxLayer = max(map(lambda l: l.maxRange(), layers))

print("Maximum overlay number: " + str(maxLayer))

for layer in layers:
 for therange in layer.ranges:
 therange.setMax(maxLayer)

for i in range(1,maxLayer+1):
 print("Animation step " + str(i))
 for layer in layers:
 if (layer.visibleAt(i)):
 print (" Layer " + layer.label + " visible")
 layer.element.set('style', 'display:inline')
 elif (not layer.visibleAt(i)):
 print (" Layer " + layer.label + " hidden")
 layer.element.set('style', 'display:none')

 layerOutPrefix = outprefix + '-step-' + str(i)
 svgoutfile = layerOutPrefix + '.svg'
 pdfoutfile = layerOutPrefix + '.pdf'

 if Path(svgoutfile).exists():
 print("Step SVG file " + svgoutfile + " already exists, won't override but cancel")
 quit()

 print(" Exporting layer " + str(i) + " to file " + pdfoutfile)
 tree.write(svgoutfile)
 call(['inkscape', '-z', '-C', '--export-pdf=' + pdfoutfile, svgoutfile])

 os.remove(svgoutfile)

latexinclude = " \\usepackage{pgffor}\n" +\
 " \\usepackage{tikz}"
latexMacro = " \\newcommand<>{\\fullsizegraphic}[1]{\n" +\
 " \\begin{tikzpicture}[remember picture,overlay]\n" +\
 " \\node[at=(current page.center)] {\n" +\
 " \includegraphics{#1}\n" +\
 " };\n" +\
 " \\end{tikzpicture}\n" +\
 " }"
latexForLoop = " \\foreach \\n in {1,...," + str(maxLayer) + "}{\n" +\
 " \\only<\\n>{\\fullsizegraphic{" + outprefix + "-step-\\n.pdf}}\n" +\
 " }"

print("\nDone. Usage in Latex:")
print(" Include in preamble:\n")
print(latexinclude)
print("")
print(latexMacro)
print("\n Use in frame:\n")
print(latexForLoop)

pyperclip.copy(latexForLoop)
print("\nCopied for loop to clipboard.")

Dominic Steinhöfel

Postdoctoral Researcher in Computer Science

I’m a PostDoc @ CISPA (Saarbrücken, Germany). My research interests center around program verification.

	

	

	

	

	

	

	

	

	

© 2024 Dominic Steinhöfel.

Published with Wowchemy — the free, open source website builder that empowers creators.

Cite

×

 Copy

 Download

