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Abstract Execution



Properties of Concrete Programs:

Functional Program Verification

//@ ensures \result >= 0;

public int abs(int a, int b) {

if (a < b) {

int tmp = a;

a = b;

b = tmp;

}

return a - b;

}
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Properties of Many Programs:

Refactorings
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Hierarchy of Verification Approaches

Testing Show correctness of one program for

one set of inputs

Program Proving Show correctness of one program for

all possible inputs

Abstract

Program Proving

Show correctness of all programs for

all possible inputs (matching a pattern).

Abstract Programs =

Programs with Abstract Placeholder Statements (APSs)
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Abstract Execution



How does one show the correctness of an abstract program?

Inductive com : Type :=

| CSkip : com

| CAss : pvs → aexp → com

| CSeq : com → com → com

| CIf : bexp → com → com → com

| CWhile : bexp → com → com.

Inductive ceval : com → state → state → Prop :=

| E_Skip : forall st,

SKIP / st \\ st
| E_Ass : forall st a1 n x,

aeval st a1 = n →
(x =! a1) / st \\ (s_update st x n)

(* ... *)
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How does one show the correctness of an abstract program?

Theorem evaluation_deterministic:

∀ c st st1 st2,

c / st \\ st1 → c / st \\ st2 → st1 = st2.

Proof.

intros c st st1 st2 H1 H2.

generalize dependent st2.

induction H1.

− (* E_Skip *) reflexivity.

− (* E_Ass *) reflexivity.

− (* ... *)
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Abstract Program Proofs by Structural Induction

• Frequently practiced in

• pen-and-paper proofs and

• interactive theorem provers like Isabelle and Coq (e.g.,

CompCert [Ler09] and CakeML [TMK+16])

• Precise second-order reasoning over program properties

• ...but very hard to automate!
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Goal:

Automatic Reasoning about Universal Properties of

Abstract Programs in an Industrial Programming Language

• Use Symbolic Execution with abstract state changes

• Model irregular termination

(exceptions, (labeled) breaks, (labeled) continues, returns)

• Retain sufficient precision due to fine-grained

specification language

• Case study: Correctness of refactoring techniques
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Example: Extract Prefix Refactoring

Martin Fowler: Refactoring - Improving the Design of Existing Code. Addison-Wesley 1999
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Declaring a Program with Abstract Placeholders
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Add Specifications to Constrain Represented Programs

13/34



Add Specifications to Constrain Represented Programs

13/34



Add Specifications to Constrain Represented Programs

13/34



Add Specifications to Constrain Represented Programs

13/34



Add Specifications to Constrain Represented Programs

13/34



Add Specifications to Constrain Represented Programs

13/34



Add Specifications to Constrain Represented Programs

13/34



Add Specifications to Constrain Represented Programs

13/34



Add Specifications to Constrain Represented Programs

13/34



Add Specifications to Constrain Represented Programs

13/34



Add Specifications to Constrain Represented Programs

13/34



Add Specifications to Constrain Represented Programs

13/34



Add Specifications to Constrain Represented Programs

13/34



Add Specifications to Constrain Represented Programs

13/34



Add Specifications to Constrain Represented Programs

13/34



Add Specifications to Constrain Represented Programs

13/34



Add Specifications to Constrain Represented Programs

Prohibit Abrupt Completion Behavior

//@ return_behavior requires false;

//@ exceptional_behavior requires false;

//@ continue_behavior requires false;

//@ break_behavior requires false;

. . .
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Add Specifications to Constrain Represented Programs

Bind Abrupt Completion Behavior to Formula

//@ return_behavior requires returnsSpec;

//@ exceptional_behavior requires excSpec;

//@ continue_behavior requires contSpec;

//@ break_behavior requires breaksSpec;

. . .
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Specification Constructs for APSs

Spec. Construct Explanation

locals(P) Refers to the Skolem (abstract) location set of local variables of

an APS with symbol P visible from outside.

declares skLocs; Specifies that an APS/method declares a list skLocs of Skolem

location set specifiers locals(·), opt. wrapped in final(·) mod-

ifiers, which can be used in APSs in the visible scope afterwards.

assignable locs; Declares the location set locs to be assignable by the APS. locs

is a list of variables, fields, and Skolem location set specifiers,

optionally wrapped in a hasTo(·) modifier.

accessible locs; Declares locs to be accessible by the APS.

return_behavior requires ϕ; Specifies that the APS returns iff ϕ holds.

exceptional_behavior requires ϕ; Spec. that the APS throws an exc. iff ϕ

holds.

break_behavior requires ϕ;

continue_behavior requires ϕ;

Specifies that the APS breaks/continues

during loop execution iff ϕ holds.

break_behavior (lbl) requires ϕ;

continue_behavior (lbl) requires ϕ;

Specifies that the APS breaks/continues to

the (loop) label lbl iff ϕ holds.
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Abstract Execution

Specification of APSs +

Symbolic Execution of APSs +

Simplification of Abstract State Changes



Symbolic Execution of an Assignment (in JavaDL)
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A Very Simple Symbolic Execution Rule for Abstract Execution

Dominic Steinhöfel, Reiner Hähnle: Modular, Correct Compilation with Automatic Soundness Proofs. ISoLA 2018
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Dominic Steinhöfel, Reiner Hähnle: Modular, Correct Compilation with Automatic Soundness Proofs. ISoLA 2018

18/34



A Very Simple Symbolic Execution Rule for Abstract Execution
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Towards a Soundness Notion:

Instantiating Abstract Updates and Path Conditions

Abstract Symbol Example Instantiation “Illegal”

UP(allLocs :≈ allLocs) x := y + 1 —

UQ(x!, y :≈ x, z) x := x + 1 || y := 12 y := 12

UR(x!, y :≈ ) x := 1 || y := 12 x := x + 1 || y := 12

CP(allLocs) x > 0 ∧ x < y —

CP(x, y, z) x > 0 ∧ x < y x¡w

CP() true x¿0
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Soundness of Abstract Execution Rules

Definition (Legal Instantiations of Sequents)
A sequent is a legal instantiation if it results from substituting

all updates UP, path conditions CP and APS symbols with legal

instantiations.

It is valid iff all its legal instantiations are valid.

Definition (Standard Sequent Calculus Rule Validity)
A sequent calculus rule is valid if the validity of the conclusion is

implied by the validity of the premisses.
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The simple Abstract Execution rule...

Too restrictive

Does not allow instantiations with irregular termination

Too abstract

Abstract updates/path conditions may read/write from any

location, no “has-to” assignables

simpleAERule

Γ ` {U}{UP(allLocs :≈ allLocs)}(CP(allLocs)→ [π ω]ϕ),∆

Γ ` {U}[π abstract_statement P; ω]ϕ,∆
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A More Complex AE Rule
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Abstract Execution

Specification of APSs +

Symbolic Execution of APSs +

Simplification of Abstract State Changes



Three Categories of Abstract Update Simplification Rules

1. Removal of ineffective (assignables in) updates (1 rule)

2. Interplay between concrete and abstract updates (2 rules)

3. Abstract update concatenation and permutation (2 rules)
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Case Study: Correctness of Refactoring Rules







Analyzing and Proving Refactoring Techniques

with Abstract Execution: Methodology

1. Create refactoring model: Two abstract programs

(before / after refactoring) with minimal specification

2. Load proof obligation

(“before refactoring ↔ after refactoring”) into KeY

3. Start automatic proof

• Proof closed =⇒ Modeled refactoring correct

• Open goals =⇒ Inspect proof, maybe adapt model
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Proof Inspection: Missing Irregular Termination Specifications
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Proving Refactoring Techniques: Results

• Proved correctness of models for 8 refactorings:

(1) Consolidate Duplicate Conditional Fragments (four variants), (2)

Decompose Conditional, (3) Extract Method, (4) Replace Exception with

Test, (5) Move Statements to Callers, (6) Slide Statements, (7) Split

Loop, (8) Remove Control Flag

• Elicitation of non-trivial behavioral restrictions not

mentioned in literature for 10 out of 11 studied models

• Automatic proofs for loop-free problems,

small proof scripts for problems with loops (coupling)
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Example: Replace Exception with Test

Lets “fix” the refactoring!
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Future and Work

• Increase support for heap-related properties (ongoing)

• Better automation for problems with loops

• Apply to structurally different (e.g., iterative vs. recursive)

& concurrent programs

• Apply to different target areas:

• Correctness-by-construction (cooperation ongoing)

• Compilation (formal foundations already established)

• Optimization / Parallelization (cooperation started)
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• Abstract Execution: abstract_program P;

Automatic proofs of abstract programs

• Precise specification of input/output //@ assignable x;

and irregular termination behavior

• Core idea: 2nd-order Skolemization UP(x :≈ y, z)

• Implemented for the KeY framework

• Case Study: Correctness of X
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Properties of Concrete Programs:

Information Flow Security

// low: OK, userInput | high: pin

public void checkPIN(int userInput) {

if (pin == userInput) {

OK = true;

} else {

OK = false;

}

}
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Properties of Many Programs:

General Security Properties

// low: OK, userInput | high: pin

public void checkPIN(int userInput) {

P

OK = false;

userInput = null;

}
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Handling Programs with Loops:

Use the invariant when proving the post condition (“use

case”)a
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Post records results, separates continuing & breaking runsa



Handling Programs with Loops:

+ Scripted Loop Coupling, Iteration Structure Harmonizationa
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Three categories of Abstract Update Simplification Rules

(3.2) Permutation of Abstract Updates in Concatenations

{UQ(z :≈ w) ◦ UP(x :≈ y)}ϕ
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