
Abstract Execution

23rd Symposium on Formal Methods, Porto, Portugal

Dominic Steinhöfel and Reiner Hähnle

steinhoefel@cs.tu-darmstadt.de

October 10th, 2019

Software Engineering Group, Computer Science Department, TU Darmstadt

This work was funded by the Hessian LOEWE initiative within the Software-Factory 4.0 project.

steinhoefel@cs.tu-darmstadt.de

Abstract Execution

Properties of Concrete Programs:

Functional Program Verification

//@ ensures \result >= 0;

public int abs(int a, int b) {

if (a < b) {

int tmp = a;

a = b;

b = tmp;

}

return a - b;

}

3/34

Properties of Many Programs:

Refactorings

4/34

Properties of Many Programs:

Refactorings

4/34

Properties of Many Programs:

Refactorings

4/34

Hierarchy of Verification Approaches

Testing Show correctness of one program for

one set of inputs

Program Proving Show correctness of one program for

all possible inputs

Abstract

Program Proving

Show correctness of all programs for

all possible inputs (matching a pattern).

Abstract Programs =

Programs with Abstract Placeholder Statements (APSs)

5/34

Hierarchy of Verification Approaches

Testing Show correctness of one program for

one set of inputs

Program Proving Show correctness of one program for

all possible inputs

Abstract

Program Proving

Show correctness of all programs for

all possible inputs (matching a pattern).

Abstract Programs =

Programs with Abstract Placeholder Statements (APSs)

5/34

Hierarchy of Verification Approaches

Testing Show correctness of one program for

one set of inputs

Program Proving Show correctness of one program for

all possible inputs

Abstract

Program Proving

Show correctness of all programs for

all possible inputs (matching a pattern).

Abstract Programs =

Programs with Abstract Placeholder Statements (APSs)

5/34

Hierarchy of Verification Approaches

Testing Show correctness of one program for

one set of inputs

Program Proving Show correctness of one program for

all possible inputs

Abstract

Program Proving

Show correctness of all programs for

all possible inputs (matching a pattern).

Abstract Programs =

Programs with Abstract Placeholder Statements (APSs)

5/34

Abstract Execution

How does one show the correctness of an abstract program?

Inductive com : Type :=

| CSkip : com

| CAss : pvs → aexp → com

| CSeq : com → com → com

| CIf : bexp → com → com → com

| CWhile : bexp → com → com.

Inductive ceval : com → state → state → Prop :=

| E_Skip : forall st,

SKIP / st \\ st
| E_Ass : forall st a1 n x,

aeval st a1 = n →
(x =! a1) / st \\ (s_update st x n)

(* ... *)

7/34

How does one show the correctness of an abstract program?

Theorem evaluation_deterministic:

∀ c st st1 st2,

c / st \\ st1 → c / st \\ st2 → st1 = st2.

Proof.

intros c st st1 st2 H1 H2.

generalize dependent st2.

induction H1.

− (* E_Skip *) reflexivity.

− (* E_Ass *) reflexivity.

− (* ... *)

7/34

Abstract Program Proofs by Structural Induction

• Frequently practiced in

• pen-and-paper proofs and

• interactive theorem provers like Isabelle and Coq (e.g.,

CompCert [Ler09] and CakeML [TMK+16])

• Precise second-order reasoning over program properties

• ...but very hard to automate!

8/34

Goal:

Automatic Reasoning about Universal Properties of

Abstract Programs in an Industrial Programming Language

• Use Symbolic Execution with abstract state changes

• Model irregular termination

(exceptions, (labeled) breaks, (labeled) continues, returns)

• Retain sufficient precision due to fine-grained

specification language

• Case study: Correctness of refactoring techniques

9/34

Goal: Automatic Reasoning

about Universal Properties of

Abstract Programs in an Industrial Programming Language

• Use Symbolic Execution with abstract state changes

• Model irregular termination

(exceptions, (labeled) breaks, (labeled) continues, returns)

• Retain sufficient precision due to fine-grained

specification language

• Case study: Correctness of refactoring techniques

9/34

Goal: Automatic Reasoning about Universal Properties of

Abstract Programs

in an Industrial Programming Language

• Use Symbolic Execution with abstract state changes

• Model irregular termination

(exceptions, (labeled) breaks, (labeled) continues, returns)

• Retain sufficient precision due to fine-grained

specification language

• Case study: Correctness of refactoring techniques

9/34

Goal: Automatic Reasoning about Universal Properties of

Abstract Programs in an Industrial Programming Language

• Use Symbolic Execution with abstract state changes

• Model irregular termination

(exceptions, (labeled) breaks, (labeled) continues, returns)

• Retain sufficient precision due to fine-grained

specification language

• Case study: Correctness of refactoring techniques

9/34

Goal: Automatic Reasoning about Universal Properties of

Abstract Programs in an Industrial Programming Language

• Use Symbolic Execution with abstract state changes

• Model irregular termination

(exceptions, (labeled) breaks, (labeled) continues, returns)

• Retain sufficient precision due to fine-grained

specification language

• Case study: Correctness of refactoring techniques

9/34

Goal: Automatic Reasoning about Universal Properties of

Abstract Programs in an Industrial Programming Language

• Use Symbolic Execution with abstract state changes

• Model irregular termination

(exceptions, (labeled) breaks, (labeled) continues, returns)

• Retain sufficient precision due to fine-grained

specification language

• Case study: Correctness of refactoring techniques

9/34

Goal: Automatic Reasoning about Universal Properties of

Abstract Programs in an Industrial Programming Language

• Use Symbolic Execution with abstract state changes

• Model irregular termination

(exceptions, (labeled) breaks, (labeled) continues, returns)

• Retain sufficient precision due to fine-grained

specification language

• Case study: Correctness of refactoring techniques

9/34

Goal: Automatic Reasoning about Universal Properties of

Abstract Programs in an Industrial Programming Language

• Use Symbolic Execution with abstract state changes

• Model irregular termination

(exceptions, (labeled) breaks, (labeled) continues, returns)

• Retain sufficient precision due to fine-grained

specification language

• Case study: Correctness of refactoring techniques

9/34

Abstract Execution

Specification of APSs +

Symbolic Execution of APSs +

Simplification of Abstract State Changes

Abstract Execution

Specification of APSs +

Symbolic Execution of APSs +

Simplification of Abstract State Changes

Example: Extract Prefix Refactoring

Martin Fowler: Refactoring - Improving the Design of Existing Code. Addison-Wesley 1999

11/34

Declaring a Program with Abstract Placeholders

12/34

Declaring a Program with Abstract Placeholders

12/34

Declaring a Program with Abstract Placeholders

12/34

Declaring a Program with Abstract Placeholders

12/34

Declaring a Program with Abstract Placeholders

12/34

Declaring a Program with Abstract Placeholders

12/34

Add Specifications to Constrain Represented Programs

13/34

Add Specifications to Constrain Represented Programs

13/34

Add Specifications to Constrain Represented Programs

13/34

Add Specifications to Constrain Represented Programs

13/34

Add Specifications to Constrain Represented Programs

13/34

Add Specifications to Constrain Represented Programs

13/34

Add Specifications to Constrain Represented Programs

13/34

Add Specifications to Constrain Represented Programs

13/34

Add Specifications to Constrain Represented Programs

13/34

Add Specifications to Constrain Represented Programs

13/34

Add Specifications to Constrain Represented Programs

13/34

Add Specifications to Constrain Represented Programs

13/34

Add Specifications to Constrain Represented Programs

13/34

Add Specifications to Constrain Represented Programs

13/34

Add Specifications to Constrain Represented Programs

13/34

Add Specifications to Constrain Represented Programs

13/34

Add Specifications to Constrain Represented Programs

Prohibit Abrupt Completion Behavior

//@ return_behavior requires false;

//@ exceptional_behavior requires false;

//@ continue_behavior requires false;

//@ break_behavior requires false;

. . .

13/34

Add Specifications to Constrain Represented Programs

Bind Abrupt Completion Behavior to Formula

//@ return_behavior requires returnsSpec;

//@ exceptional_behavior requires excSpec;

//@ continue_behavior requires contSpec;

//@ break_behavior requires breaksSpec;

. . .

13/34

Specification Constructs for APSs

Spec. Construct Explanation

locals(P) Refers to the Skolem (abstract) location set of local variables of

an APS with symbol P visible from outside.

declares skLocs; Specifies that an APS/method declares a list skLocs of Skolem

location set specifiers locals(·), opt. wrapped in final(·) mod-

ifiers, which can be used in APSs in the visible scope afterwards.

assignable locs; Declares the location set locs to be assignable by the APS. locs

is a list of variables, fields, and Skolem location set specifiers,

optionally wrapped in a hasTo(·) modifier.

accessible locs; Declares locs to be accessible by the APS.

return_behavior requires ϕ; Specifies that the APS returns iff ϕ holds.

exceptional_behavior requires ϕ; Spec. that the APS throws an exc. iff ϕ

holds.

break_behavior requires ϕ;

continue_behavior requires ϕ;

Specifies that the APS breaks/continues

during loop execution iff ϕ holds.

break_behavior (lbl) requires ϕ;

continue_behavior (lbl) requires ϕ;

Specifies that the APS breaks/continues to

the (loop) label lbl iff ϕ holds.

14/34

Abstract Execution

Specification of APSs +

Symbolic Execution of APSs +

Simplification of Abstract State Changes

Symbolic Execution of an Assignment (in JavaDL)

16/34

Symbolic Execution of an Assignment (in JavaDL)

16/34

Symbolic Execution of an Assignment (in JavaDL)

16/34

Symbolic Execution of an Assignment (in JavaDL)

16/34

Symbolic Execution of an Assignment (in JavaDL)

16/34

Symbolic Execution of a Conditional Statement (in JavaDL)

17/34

Symbolic Execution of a Conditional Statement (in JavaDL)

17/34

Symbolic Execution of a Conditional Statement (in JavaDL)

17/34

Symbolic Execution of a Conditional Statement (in JavaDL)

17/34

A Very Simple Symbolic Execution Rule for Abstract Execution

Dominic Steinhöfel, Reiner Hähnle: Modular, Correct Compilation with Automatic Soundness Proofs. ISoLA 2018

18/34

A Very Simple Symbolic Execution Rule for Abstract Execution

Dominic Steinhöfel, Reiner Hähnle: Modular, Correct Compilation with Automatic Soundness Proofs. ISoLA 2018

18/34

A Very Simple Symbolic Execution Rule for Abstract Execution

Dominic Steinhöfel, Reiner Hähnle: Modular, Correct Compilation with Automatic Soundness Proofs. ISoLA 2018

18/34

A Very Simple Symbolic Execution Rule for Abstract Execution

Dominic Steinhöfel, Reiner Hähnle: Modular, Correct Compilation with Automatic Soundness Proofs. ISoLA 2018

18/34

A Very Simple Symbolic Execution Rule for Abstract Execution

Dominic Steinhöfel, Reiner Hähnle: Modular, Correct Compilation with Automatic Soundness Proofs. ISoLA 2018

18/34

A Very Simple Symbolic Execution Rule for Abstract Execution

Dominic Steinhöfel, Reiner Hähnle: Modular, Correct Compilation with Automatic Soundness Proofs. ISoLA 2018

18/34

A Very Simple Symbolic Execution Rule for Abstract Execution

Dominic Steinhöfel, Reiner Hähnle: Modular, Correct Compilation with Automatic Soundness Proofs. ISoLA 2018

18/34

A Very Simple Symbolic Execution Rule for Abstract Execution

Dominic Steinhöfel, Reiner Hähnle: Modular, Correct Compilation with Automatic Soundness Proofs. ISoLA 2018

18/34

Towards a Soundness Notion:

Instantiating Abstract Updates and Path Conditions

Abstract Symbol Example Instantiation “Illegal”

UP(allLocs :≈ allLocs) x := y + 1 —

UQ(x!, y :≈ x, z) x := x + 1 || y := 12 y := 12

UR(x!, y :≈) x := 1 || y := 12 x := x + 1 || y := 12

CP(allLocs) x > 0 ∧ x < y —

CP(x, y, z) x > 0 ∧ x < y x¡w

CP() true x¿0

19/34

Towards a Soundness Notion:

Instantiating Abstract Updates and Path Conditions

Abstract Symbol Example Instantiation “Illegal”

UP(allLocs :≈ allLocs)

x := y + 1 —

UQ(x!, y :≈ x, z) x := x + 1 || y := 12 y := 12

UR(x!, y :≈) x := 1 || y := 12 x := x + 1 || y := 12

CP(allLocs) x > 0 ∧ x < y —

CP(x, y, z) x > 0 ∧ x < y x¡w

CP() true x¿0

19/34

Towards a Soundness Notion:

Instantiating Abstract Updates and Path Conditions

Abstract Symbol Example Instantiation “Illegal”

UP(allLocs :≈ allLocs) x := y + 1

—

UQ(x!, y :≈ x, z) x := x + 1 || y := 12 y := 12

UR(x!, y :≈) x := 1 || y := 12 x := x + 1 || y := 12

CP(allLocs) x > 0 ∧ x < y —

CP(x, y, z) x > 0 ∧ x < y x¡w

CP() true x¿0

19/34

Towards a Soundness Notion:

Instantiating Abstract Updates and Path Conditions

Abstract Symbol Example Instantiation “Illegal”

UP(allLocs :≈ allLocs) x := y + 1 —

UQ(x!, y :≈ x, z) x := x + 1 || y := 12 y := 12

UR(x!, y :≈) x := 1 || y := 12 x := x + 1 || y := 12

CP(allLocs) x > 0 ∧ x < y —

CP(x, y, z) x > 0 ∧ x < y x¡w

CP() true x¿0

19/34

Towards a Soundness Notion:

Instantiating Abstract Updates and Path Conditions

Abstract Symbol Example Instantiation “Illegal”

UP(allLocs :≈ allLocs) x := y + 1 —

UQ(x!, y :≈ x, z)

x := x + 1 || y := 12 y := 12

UR(x!, y :≈) x := 1 || y := 12 x := x + 1 || y := 12

CP(allLocs) x > 0 ∧ x < y —

CP(x, y, z) x > 0 ∧ x < y x¡w

CP() true x¿0

19/34

Towards a Soundness Notion:

Instantiating Abstract Updates and Path Conditions

Abstract Symbol Example Instantiation “Illegal”

UP(allLocs :≈ allLocs) x := y + 1 —

UQ(x!, y :≈ x, z) x := x + 1 || y := 12

y := 12

UR(x!, y :≈) x := 1 || y := 12 x := x + 1 || y := 12

CP(allLocs) x > 0 ∧ x < y —

CP(x, y, z) x > 0 ∧ x < y x¡w

CP() true x¿0

19/34

Towards a Soundness Notion:

Instantiating Abstract Updates and Path Conditions

Abstract Symbol Example Instantiation “Illegal”

UP(allLocs :≈ allLocs) x := y + 1 —

UQ(x!, y :≈ x, z) x := x + 1 || y := 12 y := 12

UR(x!, y :≈) x := 1 || y := 12 x := x + 1 || y := 12

CP(allLocs) x > 0 ∧ x < y —

CP(x, y, z) x > 0 ∧ x < y x¡w

CP() true x¿0

19/34

Towards a Soundness Notion:

Instantiating Abstract Updates and Path Conditions

Abstract Symbol Example Instantiation “Illegal”

UP(allLocs :≈ allLocs) x := y + 1 —

UQ(x!, y :≈ x, z) x := x + 1 || y := 12 y := 12

UR(x!, y :≈)

x := 1 || y := 12 x := x + 1 || y := 12

CP(allLocs) x > 0 ∧ x < y —

CP(x, y, z) x > 0 ∧ x < y x¡w

CP() true x¿0

19/34

Towards a Soundness Notion:

Instantiating Abstract Updates and Path Conditions

Abstract Symbol Example Instantiation “Illegal”

UP(allLocs :≈ allLocs) x := y + 1 —

UQ(x!, y :≈ x, z) x := x + 1 || y := 12 y := 12

UR(x!, y :≈) x := 1 || y := 12

x := x + 1 || y := 12

CP(allLocs) x > 0 ∧ x < y —

CP(x, y, z) x > 0 ∧ x < y x¡w

CP() true x¿0

19/34

Towards a Soundness Notion:

Instantiating Abstract Updates and Path Conditions

Abstract Symbol Example Instantiation “Illegal”

UP(allLocs :≈ allLocs) x := y + 1 —

UQ(x!, y :≈ x, z) x := x + 1 || y := 12 y := 12

UR(x!, y :≈) x := 1 || y := 12 x := x + 1 || y := 12

CP(allLocs) x > 0 ∧ x < y —

CP(x, y, z) x > 0 ∧ x < y x¡w

CP() true x¿0

19/34

Towards a Soundness Notion:

Instantiating Abstract Updates and Path Conditions

Abstract Symbol Example Instantiation “Illegal”

UP(allLocs :≈ allLocs) x := y + 1 —

UQ(x!, y :≈ x, z) x := x + 1 || y := 12 y := 12

UR(x!, y :≈) x := 1 || y := 12 x := x + 1 || y := 12

CP(allLocs)

x > 0 ∧ x < y —

CP(x, y, z) x > 0 ∧ x < y x¡w

CP() true x¿0

19/34

Towards a Soundness Notion:

Instantiating Abstract Updates and Path Conditions

Abstract Symbol Example Instantiation “Illegal”

UP(allLocs :≈ allLocs) x := y + 1 —

UQ(x!, y :≈ x, z) x := x + 1 || y := 12 y := 12

UR(x!, y :≈) x := 1 || y := 12 x := x + 1 || y := 12

CP(allLocs) x > 0 ∧ x < y

—

CP(x, y, z) x > 0 ∧ x < y x¡w

CP() true x¿0

19/34

Towards a Soundness Notion:

Instantiating Abstract Updates and Path Conditions

Abstract Symbol Example Instantiation “Illegal”

UP(allLocs :≈ allLocs) x := y + 1 —

UQ(x!, y :≈ x, z) x := x + 1 || y := 12 y := 12

UR(x!, y :≈) x := 1 || y := 12 x := x + 1 || y := 12

CP(allLocs) x > 0 ∧ x < y —

CP(x, y, z) x > 0 ∧ x < y x¡w

CP() true x¿0

19/34

Towards a Soundness Notion:

Instantiating Abstract Updates and Path Conditions

Abstract Symbol Example Instantiation “Illegal”

UP(allLocs :≈ allLocs) x := y + 1 —

UQ(x!, y :≈ x, z) x := x + 1 || y := 12 y := 12

UR(x!, y :≈) x := 1 || y := 12 x := x + 1 || y := 12

CP(allLocs) x > 0 ∧ x < y —

CP(x, y, z)

x > 0 ∧ x < y x¡w

CP() true x¿0

19/34

Towards a Soundness Notion:

Instantiating Abstract Updates and Path Conditions

Abstract Symbol Example Instantiation “Illegal”

UP(allLocs :≈ allLocs) x := y + 1 —

UQ(x!, y :≈ x, z) x := x + 1 || y := 12 y := 12

UR(x!, y :≈) x := 1 || y := 12 x := x + 1 || y := 12

CP(allLocs) x > 0 ∧ x < y —

CP(x, y, z) x > 0 ∧ x < y

x¡w

CP() true x¿0

19/34

Towards a Soundness Notion:

Instantiating Abstract Updates and Path Conditions

Abstract Symbol Example Instantiation “Illegal”

UP(allLocs :≈ allLocs) x := y + 1 —

UQ(x!, y :≈ x, z) x := x + 1 || y := 12 y := 12

UR(x!, y :≈) x := 1 || y := 12 x := x + 1 || y := 12

CP(allLocs) x > 0 ∧ x < y —

CP(x, y, z) x > 0 ∧ x < y x¡w

CP() true x¿0

19/34

Towards a Soundness Notion:

Instantiating Abstract Updates and Path Conditions

Abstract Symbol Example Instantiation “Illegal”

UP(allLocs :≈ allLocs) x := y + 1 —

UQ(x!, y :≈ x, z) x := x + 1 || y := 12 y := 12

UR(x!, y :≈) x := 1 || y := 12 x := x + 1 || y := 12

CP(allLocs) x > 0 ∧ x < y —

CP(x, y, z) x > 0 ∧ x < y x¡w

CP()

true x¿0

19/34

Towards a Soundness Notion:

Instantiating Abstract Updates and Path Conditions

Abstract Symbol Example Instantiation “Illegal”

UP(allLocs :≈ allLocs) x := y + 1 —

UQ(x!, y :≈ x, z) x := x + 1 || y := 12 y := 12

UR(x!, y :≈) x := 1 || y := 12 x := x + 1 || y := 12

CP(allLocs) x > 0 ∧ x < y —

CP(x, y, z) x > 0 ∧ x < y x¡w

CP() true

x¿0

19/34

Towards a Soundness Notion:

Instantiating Abstract Updates and Path Conditions

Abstract Symbol Example Instantiation “Illegal”

UP(allLocs :≈ allLocs) x := y + 1 —

UQ(x!, y :≈ x, z) x := x + 1 || y := 12 y := 12

UR(x!, y :≈) x := 1 || y := 12 x := x + 1 || y := 12

CP(allLocs) x > 0 ∧ x < y —

CP(x, y, z) x > 0 ∧ x < y x¡w

CP() true x¿0

19/34

Soundness of Abstract Execution Rules

Definition (Legal Instantiations of Sequents)
A sequent is a legal instantiation if it results from substituting

all updates UP, path conditions CP and APS symbols with legal

instantiations.

It is valid iff all its legal instantiations are valid.

Definition (Standard Sequent Calculus Rule Validity)
A sequent calculus rule is valid if the validity of the conclusion is

implied by the validity of the premisses.

20/34

Soundness of Abstract Execution Rules

Definition (Legal Instantiations of Sequents)
A sequent is a legal instantiation if it results from substituting

all updates UP, path conditions CP and APS symbols with legal

instantiations.

It is valid iff all its legal instantiations are valid.

Definition (Standard Sequent Calculus Rule Validity)
A sequent calculus rule is valid if the validity of the conclusion is

implied by the validity of the premisses.

20/34

The simple Abstract Execution rule...

Too restrictive

Does not allow instantiations with irregular termination

Too abstract

Abstract updates/path conditions may read/write from any

location, no “has-to” assignables

simpleAERule

Γ ` {U}{UP(allLocs :≈ allLocs)}(CP(allLocs)→ [π ω]ϕ),∆

Γ ` {U}[π abstract_statement P; ω]ϕ,∆

21/34

The simple Abstract Execution rule is insufficient...

Too restrictive

Does not allow instantiations with irregular termination

Too abstract

Abstract updates/path conditions may read/write from any

location, no “has-to” assignables

simpleAERule

Γ ` {U}{UP(allLocs :≈ allLocs)}(CP(allLocs)→ [π ω]ϕ),∆

Γ ` {U}[π abstract_statement P; ω]ϕ,∆

21/34

The simple Abstract Execution rule is insufficient...

Too restrictive

Does not allow instantiations with irregular termination

Too abstract

Abstract updates/path conditions may read/write from any

location, no “has-to” assignables

simpleAERule

Γ ` {U}{UP(allLocs :≈ allLocs)}(CP(allLocs)→ [π ω]ϕ),∆

Γ ` {U}[π abstract_statement P; ω]ϕ,∆

21/34

A More Complex AE Rule

22/34

A More Complex AE Rule

22/34

A More Complex AE Rule

22/34

A More Complex AE Rule

22/34

A More Complex AE Rule

22/34

A More Complex AE Rule

22/34

A More Complex AE Rule

22/34

A More Complex AE Rule

22/34

A More Complex AE Rule

22/34

A More Complex AE Rule

22/34

A More Complex AE Rule

22/34

A More Complex AE Rule

22/34

A More Complex AE Rule

22/34

Abstract Execution

Specification of APSs +

Symbolic Execution of APSs +

Simplification of Abstract State Changes

Three Categories of Abstract Update Simplification Rules

1. Removal of ineffective (assignables in) updates (1 rule)

2. Interplay between concrete and abstract updates (2 rules)

3. Abstract update concatenation and permutation (2 rules)

24/34

Three Categories of Abstract Update Simplification Rules

1. Removal of ineffective (assignables in) updates (1 rule)

2. Interplay between concrete and abstract updates (2 rules)

3. Abstract update concatenation and permutation (2 rules)

24/34

Three Categories of Abstract Update Simplification Rules

1. Removal of ineffective (assignables in) updates (1 rule)

2. Interplay between concrete and abstract updates (2 rules)

3. Abstract update concatenation and permutation (2 rules)

24/34

Three Categories of Abstract Update Simplification Rules

1. Removal of ineffective (assignables in) updates (1 rule)

2. Interplay between concrete and abstract updates (2 rules)

3. Abstract update concatenation and permutation (2 rules)

24/34

Case Study: Correctness of Refactoring Rules

Analyzing and Proving Refactoring Techniques

with Abstract Execution: Methodology

1. Create refactoring model: Two abstract programs

(before / after refactoring) with minimal specification

2. Load proof obligation

(“before refactoring ↔ after refactoring”) into KeY

3. Start automatic proof

• Proof closed =⇒ Modeled refactoring correct

• Open goals =⇒ Inspect proof, maybe adapt model

27/34

Analyzing and Proving Refactoring Techniques

with Abstract Execution: Methodology

1. Create refactoring model: Two abstract programs

(before / after refactoring) with minimal specification

2. Load proof obligation

(“before refactoring ↔ after refactoring”) into KeY

3. Start automatic proof

• Proof closed =⇒ Modeled refactoring correct

• Open goals =⇒ Inspect proof, maybe adapt model

27/34

Analyzing and Proving Refactoring Techniques

with Abstract Execution: Methodology

1. Create refactoring model: Two abstract programs

(before / after refactoring) with minimal specification

2. Load proof obligation

(“before refactoring ↔ after refactoring”) into KeY

3. Start automatic proof

• Proof closed =⇒ Modeled refactoring correct

• Open goals =⇒ Inspect proof, maybe adapt model

27/34

Analyzing and Proving Refactoring Techniques

with Abstract Execution: Methodology

1. Create refactoring model: Two abstract programs

(before / after refactoring) with minimal specification

2. Load proof obligation

(“before refactoring ↔ after refactoring”) into KeY

3. Start automatic proof

• Proof closed =⇒ Modeled refactoring correct

• Open goals =⇒ Inspect proof, maybe adapt model

27/34

Analyzing and Proving Refactoring Techniques

with Abstract Execution: Methodology

1. Create refactoring model: Two abstract programs

(before / after refactoring) with minimal specification

2. Load proof obligation

(“before refactoring ↔ after refactoring”) into KeY

3. Start automatic proof

• Proof closed =⇒ Modeled refactoring correct

• Open goals =⇒ Inspect proof, maybe adapt model

27/34

Analyzing and Proving Refactoring Techniques

with Abstract Execution: Methodology

1. Create refactoring model: Two abstract programs

(before / after refactoring) with minimal specification

2. Load proof obligation

(“before refactoring ↔ after refactoring”) into KeY

3. Start automatic proof

• Proof closed =⇒ Modeled refactoring correct

• Open goals =⇒ Inspect proof, maybe adapt model

27/34

Proof Inspection: Imprecise I/O Specifications

28/34

Proof Inspection: Missing Irregular Termination Specifications

29/34

Proving Refactoring Techniques: Results

• Proved correctness of models for 8 refactorings:

(1) Consolidate Duplicate Conditional Fragments (four variants), (2)

Decompose Conditional, (3) Extract Method, (4) Replace Exception with

Test, (5) Move Statements to Callers, (6) Slide Statements, (7) Split

Loop, (8) Remove Control Flag

• Elicitation of non-trivial behavioral restrictions not

mentioned in literature for 10 out of 11 studied models

• Automatic proofs for loop-free problems,

small proof scripts for problems with loops (coupling)

30/34

Proving Refactoring Techniques: Results

• Proved correctness of models for 8 refactorings:

(1) Consolidate Duplicate Conditional Fragments (four variants), (2)

Decompose Conditional, (3) Extract Method, (4) Replace Exception with

Test, (5) Move Statements to Callers, (6) Slide Statements, (7) Split

Loop, (8) Remove Control Flag

• Elicitation of non-trivial behavioral restrictions not

mentioned in literature for 10 out of 11 studied models

• Automatic proofs for loop-free problems,

small proof scripts for problems with loops (coupling)

30/34

Proving Refactoring Techniques: Results

• Proved correctness of models for 8 refactorings:

(1) Consolidate Duplicate Conditional Fragments (four variants), (2)

Decompose Conditional, (3) Extract Method, (4) Replace Exception with

Test, (5) Move Statements to Callers, (6) Slide Statements, (7) Split

Loop, (8) Remove Control Flag

• Elicitation of non-trivial behavioral restrictions not

mentioned in literature for 10 out of 11 studied models

• Automatic proofs for loop-free problems,

small proof scripts for problems with loops (coupling)

30/34

Proving Refactoring Techniques: Results

• Proved correctness of models for 8 refactorings:

(1) Consolidate Duplicate Conditional Fragments (four variants), (2)

Decompose Conditional, (3) Extract Method, (4) Replace Exception with

Test, (5) Move Statements to Callers, (6) Slide Statements, (7) Split

Loop, (8) Remove Control Flag

• Elicitation of non-trivial behavioral restrictions not

mentioned in literature for 10 out of 11 studied models

• Automatic proofs for loop-free problems,

small proof scripts for problems with loops (coupling)

30/34

Example: Replace Exception with Test

Don’t use exceptions...

31/34

Example: Replace Exception with Test

Don’t use exceptions...

31/34

Example: Replace Exception with Test

Don’t use exceptions...

31/34

Example: Replace Exception with Test

Don’t use exceptions...

31/34

Example: Replace Exception with Test

...as a substitute for conditional tests.

31/34

Example: Replace Exception with Test

...as a substitute for conditional tests.

31/34

Example: Replace Exception with Test

...as a substitute for conditional tests.

31/34

Example: Replace Exception with Test

...as a substitute for conditional tests.

31/34

Example: Replace Exception with Test

Example run for y = 0

31/34

Example: Replace Exception with Test

Example run for y = 0

31/34

Example: Replace Exception with Test

Example run for y = 0

31/34

Example: Replace Exception with Test

Example run for y = 0

31/34

Example: Replace Exception with Test

Example run for y = 0

31/34

Example: Replace Exception with Test

Example run for y = 0

31/34

Example: Replace Exception with Test

Example run for y = 0

31/34

Example: Replace Exception with Test

Lets “fix” the refactoring!

31/34

Example: Replace Exception with Test

“Roll back” to a common program state.

31/34

Example: Replace Exception with Test

“Roll back” to a common program state.

31/34

Example: Replace Exception with Test

“Roll back” to a common program state.

31/34

Future Work & Conclusion

Future and Work

• Increase support for heap-related properties (ongoing)

• Better automation for problems with loops

• Apply to structurally different (e.g., iterative vs. recursive)

& concurrent programs

• Apply to different target areas:

• Correctness-by-construction (cooperation ongoing)

• Compilation (formal foundations already established)

• Optimization / Parallelization (cooperation started)

33/34

Future and Work

• Increase support for heap-related properties (ongoing)

• Better automation for problems with loops

• Apply to structurally different (e.g., iterative vs. recursive)

& concurrent programs

• Apply to different target areas:

• Correctness-by-construction (cooperation ongoing)

• Compilation (formal foundations already established)

• Optimization / Parallelization (cooperation started)

33/34

Future and Work

• Increase support for heap-related properties (ongoing)

• Better automation for problems with loops

• Apply to structurally different (e.g., iterative vs. recursive)

& concurrent programs

• Apply to different target areas:

• Correctness-by-construction (cooperation ongoing)

• Compilation (formal foundations already established)

• Optimization / Parallelization (cooperation started)

33/34

Future and Work

• Increase support for heap-related properties (ongoing)

• Better automation for problems with loops

• Apply to structurally different (e.g., iterative vs. recursive)

& concurrent programs

• Apply to different target areas:

• Correctness-by-construction (cooperation ongoing)

• Compilation (formal foundations already established)

• Optimization / Parallelization (cooperation started)

33/34

Future and Work

• Increase support for heap-related properties (ongoing)

• Better automation for problems with loops

• Apply to structurally different (e.g., iterative vs. recursive)

& concurrent programs

• Apply to different target areas:

• Correctness-by-construction (cooperation ongoing)

• Compilation (formal foundations already established)

• Optimization / Parallelization (cooperation started)

33/34

Future and Work

• Increase support for heap-related properties (ongoing)

• Better automation for problems with loops

• Apply to structurally different (e.g., iterative vs. recursive)

& concurrent programs

• Apply to different target areas:

• Correctness-by-construction (cooperation ongoing)

• Compilation (formal foundations already established)

• Optimization / Parallelization (cooperation started)

33/34

Future and Work

• Increase support for heap-related properties (ongoing)

• Better automation for problems with loops

• Apply to structurally different (e.g., iterative vs. recursive)

& concurrent programs

• Apply to different target areas:

• Correctness-by-construction (cooperation ongoing)

• Compilation (formal foundations already established)

• Optimization / Parallelization (cooperation started)

33/34

Future and Work

• Increase support for heap-related properties (ongoing)

• Better automation for problems with loops

• Apply to structurally different (e.g., iterative vs. recursive)

& concurrent programs

• Apply to different target areas:

• Correctness-by-construction (cooperation ongoing)

• Compilation (formal foundations already established)

• Optimization / Parallelization (cooperation started)

33/34

• Abstract Execution: abstract_program P;

Automatic proofs of abstract programs

• Precise specification of input/output //@ assignable x;

and irregular termination behavior

• Core idea: 2nd-order Skolemization UP(x :≈ y, z)

• Implemented for the KeY framework

• Case Study: Correctness of X

Java refactoring techniques

• Abstract Execution: abstract_program P;

Automatic proofs of abstract programs

• Precise specification of input/output //@ assignable x;

and irregular termination behavior

• Core idea: 2nd-order Skolemization UP(x :≈ y, z)

• Implemented for the KeY framework

• Case Study: Correctness of X

Java refactoring techniques

• Abstract Execution: abstract_program P;

Automatic proofs of abstract programs

• Precise specification of input/output //@ assignable x;

and irregular termination behavior

• Core idea: 2nd-order Skolemization UP(x :≈ y, z)

• Implemented for the KeY framework

• Case Study: Correctness of X

Java refactoring techniques

• Abstract Execution: abstract_program P;

Automatic proofs of abstract programs

• Precise specification of input/output //@ assignable x;

and irregular termination behavior

• Core idea: 2nd-order Skolemization UP(x :≈ y, z)

• Implemented for the KeY framework

• Case Study: Correctness of X

Java refactoring techniques

• Abstract Execution: abstract_program P;

Automatic proofs of abstract programs

• Precise specification of input/output //@ assignable x;

and irregular termination behavior

• Core idea: 2nd-order Skolemization UP(x :≈ y, z)

• Implemented for the KeY framework

• Case Study: Correctness of X

Java refactoring techniques

• Abstract Execution: abstract_program P;

Automatic proofs of abstract programs

• Precise specification of input/output //@ assignable x;

and irregular termination behavior

• Core idea: 2nd-order Skolemization UP(x :≈ y, z)

• Implemented for the KeY framework

• Case Study: Correctness of X

Java refactoring techniques

References

Anna Maria Eilertsen, Anya Helene Bagge, and Volker Stolz,

Safer Refactorings, Proc. 7th Intern. Symp. on Leveraging

Applications of Formal Methods, ISoLA, 2016, pp. 517–531.

Martin Fowler, Refactoring: Improving the Design of

Existing Code, Object Technology Series, Addison-Wesley,

June 1999.

Xavier Leroy, Formal Verification of a Realistic Compiler,

Communications of the ACM 52 (2009), no. 7, 107–115.

Yong Kiam Tan, Magnus O. Myreen, Ramana Kumar,

Anthony Fox, Scott Owens, and Michael Norrish, A New

Verified Compiler Backend for CakeML, Proc. 21st Intern.

Conf. on Functional Programming, ACM, 2016, pp. 60–73.

Properties of Concrete Programs:

Relational Verification

Properties of Concrete Programs:

Relational Verification

Properties of Concrete Programs:

Relational Verification

Properties of Concrete Programs:

Information Flow Security

// low: OK, userInput | high: pin

public void checkPIN(int userInput) {

if (pin == userInput) {

OK = true;

} else {

OK = false;

}

}

Properties of Many Programs:

Compilation Rules

if (b

)

P1

else

P2

Properties of Many Programs:

Compilation Rules

if (b

)

P1

else

P2

compiles−−−−−→
to

Properties of Many Programs:

Compilation Rules

if (b

)

P1

else

P2

compiles−−−−−→
to

%1 = load i1, i1* %b

br i1 %1, label %2, label

%3

P1 ; <label>:%2

br label %4

P2 ; <label>:%3

br label %4

; <label>:%4

Properties of Many Programs:

Compilation Rules

if (b

)

P1

else

P2

compiles−−−−−→
to

%1 = load i1, i1* %b

br i1 %1, label %2, label

%3

P1 ; <label>:%2

br label %4

P2 ; <label>:%3

br label %4

; <label>:%4

Properties of Many Programs:

Correctness-by-Construction (CbC)

Properties of Many Programs:

Correctness-by-Construction (CbC)

Properties of Many Programs:

Correctness-by-Construction (CbC)

Properties of Many Programs:

General Security Properties

// low: OK, userInput | high: pin

public void checkPIN(int userInput) {

P

OK = false;

userInput = null;

}

A Complex AE Rule in a Loop Context

A Complex AE Rule in a Loop Context

A Complex AE Rule in a Loop Context

A Complex AE Rule in a Loop Context

A Complex AE Rule in a Loop Context

A Complex AE Rule in a Loop Context

A Complex AE Rule in a Loop Context

A Complex AE Rule in a Loop Context

A Complex AE Rule in a Loop Context

A Complex AE Rule in a Loop Context

A Complex AE Rule in a Loop Context

Handling Programs with Loops:

a

Handling Programs with Loops:

Use Loop Invariant Reasoninga

Handling Programs with Loops:

Prove that the invariant holds in the initial state...a

Handling Programs with Loops:

Prove that the invariant holds in the initial state...a

Handling Programs with Loops:

Prove that the invariant holds in the initial state...a

Handling Programs with Loops:

...and is inductive and strong enough for the post conditiona

Handling Programs with Loops:

Reason about an arbitrary iteration by anonymizationa

Handling Programs with Loops:

Assume the invariant holds before an arbitrary run...a

Handling Programs with Loops:

...and that it is preserved by that runa

Handling Programs with Loops:

...and that it is preserved by that runa

Handling Programs with Loops:

...and that it is preserved by that runa

Handling Programs with Loops:

...and that it is preserved by that runa

Handling Programs with Loops:

Use the invariant when proving the post condition (“use

case”)a

Handling Programs with Loops:

Post records results, separates continuing & breaking runsa

Handling Programs with Loops:

Post records results, separates continuing & breaking runsa

Handling Programs with Loops:

Post records results, separates continuing & breaking runsa

Handling Programs with Loops:

Post records results, separates continuing & breaking runsa

Handling Programs with Loops:

Post records results, separates continuing & breaking runsa

Handling Programs with Loops:

Post records results, separates continuing & breaking runsa

Handling Programs with Loops:

+ Scripted Loop Coupling, Iteration Structure Harmonizationa

Update Simplification in JavaDL

Update Simplification in JavaDL

Update Simplification in JavaDL

Update Simplification in JavaDL

Update Simplification in JavaDL

Update Simplification in JavaDL

Update Simplification in JavaDL

Update Simplification in JavaDL

Update Simplification in JavaDL

Update Simplification in JavaDL

Update Simplification in JavaDL

(1) Removal of Ineffective “Assignables”

{UP(x, y :≈ x)}(x > 17)

(1) Removal of Ineffective “Assignables”

{UP(x :≈ x)}(x > 17)

(1) Removal of Ineffective Abstract Updates

{UP(x, y :≈ x)}(z > 17)

(1) Removal of Ineffective Abstract Updates

z > 17

(2.1) Application of Concrete on Abstract Updates

(2.1) Application of Concrete on Abstract Updates

{x := 17 || y := z}

{UP(x :≈ x, y)}(z > 0)

(2.1) Application of Concrete on Abstract Updates

{x := 17 || y := z}{UP(x :≈ x, y)}

(z > 0)

(2.1) Application of Concrete on Abstract Updates

{x := 17 || y := z}{UP(x :≈ x, y)}(z > 0)

(2.1) Application of Concrete on Abstract Updates

{x := 17}{UP(x :≈ 17, z)}

{y := z}

(z > 0)

(2.1) Application of Concrete on Abstract Updates

{x := 17}{UP(x :≈ 17, z)}{y := z}(z > 0)

(2.1) Application of Concrete on Abstract Updates

{x := 17}{UP(x! :≈ 17, z)}{y := z}(z > 0)

(2.1) Application of Concrete on Abstract Updates

{UP(x! :≈ 17, z)}{y := z}(z > 0)

Three categories of Abstract Update Simplification Rules

(2.2) Application of Abstract on Concrete Updates

{UP(y! :≈ z)}{x := y}ϕ(x)

Three categories of Abstract Update Simplification Rules

(2.2) Application of Abstract on Concrete Updates

{UP(x! :≈ z)}ϕ(x)

Three categories of Abstract Update Simplification Rules

(3.1) Application of Abstract on Abstract Updates

{UP(x :≈ y)}{UQ(z :≈ w)}ϕ

Three categories of Abstract Update Simplification Rules

(3.1) Application of Abstract on Abstract Updates

{UP(x :≈ y) ◦ UQ(z :≈ w)}ϕ

Three categories of Abstract Update Simplification Rules

(3.2) Permutation of Abstract Updates in Concatenations

{UP(x :≈ y) ◦ UQ(z :≈ w)}ϕ

Three categories of Abstract Update Simplification Rules

(3.2) Permutation of Abstract Updates in Concatenations

{UQ(z :≈ w) ◦ UP(x :≈ y)}ϕ

	Motivation: Abstract
	Motivation: Execution
	Specification
	Execution of APSs
	Abstract Update Simplification
	Case Study: Correctness of Refactoring Rules
	Future Work & Conclusion
	Appendix
	Appendix

