
Input Invariants

Dominic Steinhöfel
CISPA Helmholtz Center for Information Security

Saarbrücken, Germany
dominic.steinhoefel@cispa.de

Andreas Zeller
CISPA Helmholtz Center for Information Security

Saarbrücken, Germany
zeller@cispa.de

ABSTRACT

How can we generate valid system inputs? Grammar-based fuzzers
are highly efficient in producing syntactically valid system inputs.
However, programs will often reject inputs that are semantically

invalid. We introduce ISLa, a declarative specification language for

context-sensitive properties of structured system inputs based on
context-free grammars. With ISLa, it is possible to specify input

constraints like ła variable has to be defined before it is used,ž łthe
‘file name’ block must be 100 bytes long,ž or łthe number of columns
in all CSV rows must be identical.ž

Such constraints go into the ISLa fuzzer, which leverages the
power of solvers like Z3 to solve semantic constraints and, on top,
handles quantifiers and predicates over grammar structure. We
show that a few ISLa constraints suffice to produce 100% semanti-
cally valid inputs while still maintaining input diversity. ISLa can
also parse and precisely validate inputs against semantic constraints.

ISLa constraints can be mined from existing input samples. For
this, our ISLearn prototype uses a catalog of common patterns,
instantiates these over input elements, and retains those candidates
that hold for the inputs observed and whose instantiations are fully
accepted by input-processing programs. The resulting constraints
can then again be used for fuzzing and parsing.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging; Specification languages; Constraint and logic languages;
Syntax; Semantics; Parsers; Software reverse engineering; Documen-

tation; • Theory of computation → Grammars and context-

free languages; Formalisms.

KEYWORDS

fuzzing, specification language, grammars, constraint mining

ACM Reference Format:

Dominic Steinhöfel and Andreas Zeller. 2022. Input Invariants. In Proceed-

ings of the 30th ACM Joint European Software Engineering Conference and

Symposium on the Foundations of Software Engineering (ESEC/FSE ’22), No-

vember 14ś18, 2022, Singapore, Singapore.ACM,NewYork, NY, USA, 12 pages.
https://doi.org/10.1145/3540250.3549139

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9413-0/22/11.
https://doi.org/10.1145/3540250.3549139

1 INTRODUCTION

Automated software testing with random inputs (fuzzing) [20] effec-
tively finds bugs in programs. Pure random inputs can quickly dis-
cover errors in input processing. Yet, if a program expects complex
structured inputs (e.g., C programs, JSON expressions, or binary
formats), the chances of randomly producing valid inputs that are
accepted by the parser and reach deeper functionality are low.

Language-based fuzzers [9, 13, 14] overcome this limitation by
generating inputs from a specification of a program’s expected
input language, frequently expressed as a Context-Free Grammar

(CFG). This considerably increases the chance of producing an input
passing the program’s parsing stage and reaching its core logic. Yet,
while being great for parsing, CFGs are often too coarse for producing
inputs. Consider, e.g., the language of XML documents (without
document type). In XML, the identifiers of opening and closing
tags have to match each other, as in ł<name>text</name>.ž Such
matching cannot be expressed in a CFG. Even though a CFG can
be used for parsing (cf. Fig. 1), using it as a producer for fuzzing
will typically yield non-matching inputs like ł<O L="cmV">B7</P>.ž
Such invalid inputs are still useful for testing the parser, but hardly
ever reach functionality beyond input rejection.

To allow for precise production, we can switch to a different

formalism. However, existing solutions all have their drawbacks.
Using general purpose code to produce inputs or enriching gram-
mars with such code is closely tied to an implementation language,
and does not allow for parsing and recombining inputs, which is a
common feature of modern fuzzers. Unrestricted grammars can in
principle specify any computable input property, but we see them
as łTuring tar-pits,ž in which łeverything is possible, but nothing
of interest is easyž [23]Ðjust try, for instance, to express that some
number is the sum of two input elements.

In this paper, we bring forward a different solution by introduc-
ing a (programming and target) language-independent, declarative
specification language named ISLa (Input Specification Language)
for expressing semantic constraints over CFGs. By enriching existing
grammars with constraints, we leverage the simplicity of CFGs,
while significantly extending their expressiveness. ISLa is designed
as a general-purpose formalism to specify the format even of highly
complex program inputs. It can be used to produce such inputs
automatically, making ISLa a highly effective fuzzer that can pass

all validation steps; and it can be used to parse inputs and validate

constraints, making ISLa an effective validator of inputs.
To formalize an input format in and for ISLa, one starts with

the definition of a CFG. If a grammar is not already available, it is
possible to extract it from inputs [18] and programs [10]. Then, one
iteratively strengthens the definition by adding more and more ISLa
constraints until the represented language is a sufficiently close
approximation of the target languageÐan invariant over all inputs.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

583

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0003-4439-7129
https://orcid.org/0000-0003-4719-8803
https://doi.org/10.1145/3540250.3549139
https://doi.org/10.1145/3540250.3549139
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3540250.3549139&domain=pdf&date_stamp=2022-11-09

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Dominic Steinhöfel and Andreas Zeller

⟨xml-tree⟩ F ⟨xml-openclose-tag⟩

| ⟨xml-open-tag⟩ ⟨inner-xml-tree⟩ ⟨xml-close-tag⟩

⟨inner-xml-tree⟩ F ⟨TEXT ⟩ | ⟨xml-tree⟩

| ⟨inner-xml-tree⟩ ⟨inner-xml-tree⟩

⟨xml-open-tag⟩ F ‘<’ ⟨id ⟩ ‘>’ | ‘<’ ⟨id ⟩ ‘␣’ ⟨xml-attribute⟩ ‘>’

⟨xml-close-tag⟩ F ‘</’ ⟨id ⟩ ‘>’

⟨xml-openclose-tag⟩ F ‘<’ ⟨id ⟩ ‘/>’ | ‘<’ ⟨id ⟩ ‘␣’ ⟨xml-attribute⟩ ‘/>’

⟨xml-attribute⟩ F ⟨id ⟩ ‘="’ ⟨TEXT ⟩ ‘"’

| ⟨xml-attribute⟩ ‘␣’ ⟨xml-attribute⟩

⟨id ⟩ F ⟨id-no-prefix ⟩ | ⟨id-with-prefix ⟩

⟨id-no-prefix ⟩ F ⟨ID-START -CHAR⟩ ⟨ID-CHAR⟩∗

⟨id-with-prefix ⟩ F ⟨id-no-prefix ⟩ ‘:’ ⟨id-no-prefix ⟩

Figure 1: A context-free grammar for XML. Lexer rules (for

the capitalized nonterminals) are omitted.

<xml-tree>.<xml-open-tag>.<id> = <xml-tree>.<xml-close-tag>.<id>

Listing 1: ISLa constraint for well-balanced XML.

forall <xml-tree> tree="<{<id> opid}[<xml-attribute>]><inner-xml-

↩→ tree></{<id> clid}>" in start:

(= opid clid)

Listing 2: Core-ISLa constraint for well-balanced XML.

To get an idea of ISLa constraints, consider Listing 1, referring
to the grammar in Fig. 1. The constraint expresses that the ⟨id⟩s
of opening and closing tagsÐin all XML trees that are not self-
closingÐare equal. Programmers write such constraints in the sim-

plified layer of the ISLa language. Our solver translates it to the
łCore-ISLaž constraint in Listing 2. The Core-ISLa version explicitly

quantifies over all ⟨xml-tree⟩ elements, binds its constituents to
variables using pattern matching and expresses the equality using
the SMT-LIB formula [1] ł(= opid clid).ž This is typical for an
ISLa constraint: It first identifies derivation tree elements, and then
poses constraints over these elements. During fuzzing, ISLa then
would produce matching pairs of opening and closing ⟨id⟩s.

The resulting valid inputs can be used as seed inputs for muta-
tional fuzzers like AFL. The ISLa solver can be integrated into the
fitness function of evolutionary fuzzers, guiding their mutations to-
ward semantically valid inputs; the solver can quickly reject invalid
inputs without having to run actual tests.

Yet, where would ISLa constraints come from? Testers can write
ISLa constraints manually, thus ensuring input validity, and add
additional constraints to further control the inputs generated. How-
ever, they can also mine constraints from existing inputs. To this
end, our ISLearn tool uses a catalog of common constraint patterns,
instantiates these over all inputs and input elements, and retains
those constraint candidates that hold for all inputs. The catalog
holds patterns to identify matching elements, length relations, arith-
metic relations, checksums, and more. ISLearn is similar in spirit to
the Daikon function-level invariant detector [7]. On top, ISLearn
can verify and refine constraint candidates by having the program
under test check whether derived concrete inputs are valid.

After illustrating ISLa by example (Section 2), this paper makes
the following contributions:

A specification language for input constraints. We propose a
formalism (ISLa) for augmenting existing context-free gram-
mars with context-sensitive constraints. ISLa has a rich declar-

ative layer, separating semantic properties (constraints) from
syntactic properties (the grammar). We formally define its syn-
tax and semantics in Section 3. To the best of our knowledge,
ISLa is the first formalism to express context-sensitive constraints

for the generation of system inputs.

Semantic fuzzing. We describe an efficient procedure to gener-
ate inputs satisfying ISLa constraints (and their grammars),
and discuss our implementation (Section 4). To the best of our
knowledge, ISLa is the first fuzzer (and checker) to make use of

such constraints, giving users unprecedented means to specify
which system inputs should be generated.

Mining input constraints. We introduce ISLearn, a system for
automatically mining input constraints in conjunctive normal
form based on a configurable pattern catalog (Section 5). To
the best of our knowledge, ISLearn is the first approach to infer
such invariants from given system inputs.

ISLa and its constraints are effective. In our evaluation (Section 6),
we formalize semantic properties from diverse languages, namely
XML, a subset of C, reStructuredText, CSV files, and TAR archives.
Our results demonstrate that already a few lines of ISLa specifi-
cations suffice to generate 100% precise inputs while maintaining
diversity. On top, our constraint miner ISLearn can extract precise
invariants about ICMP packets, DOT graphs, and Racket programs.
After discussing related work (Section 7), Section 8 closes with
conclusion and future work. Our electronic appendix [25] provides
further formalizations, explanations, examples, and proofs.

2 ISLA BY EXAMPLE

Let us illustrate the expressive power of ISLa by detailing our XML
example. When randomly feeding an XML processor (e.g., Python’s
xml.etree package) with inputs generated from the XML grammar
in Fig. 1 using a grammar fuzzer, we obtain not only one, but three
kinds of errors: (1) łMismatched tag,ž (2) łduplicate attribute,ž and
(3) łunbound prefix.ž By adding ISLa specifications to the XML
grammar, we can substantially increase the portion of valid XML
we pass to the processor. Moreover, these specifications document
XML features relevant to the parser of our test target.

Since ISLa is closed under conjunction, we can incrementally re-
fine the specification simply by adding individual input constraints
until we are satisfied with the quality of the generated inputs or
the value of the specification as a documentation measure.

From the invalid inputs generated from the XML grammar, about
52% are invalid due to a mismatched tag, and about 22% because of
an unbound prefix. Let us address these.

2.1 Matching Tags

The ISLa constraints in Listings 1 and 2 addresses the problem of
mismatched tags by enforcing that the two IDs match. The Core-
ISLa version (Listing 2) uses a universal quantifier (forall) over
all sub expressions of type ⟨xml-tree⟩, which is the specified type
of the bound variable tree. Types are nonterminals from the ref-
erence grammar (here the XML grammar in Fig. 1) or the special
type int for quantifiers over numbers. The present quantifier uses

584

Input Invariants ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

pattern matching. ISLa only considers matches conforming to the
pattern (in quotation marks); in the case of a successful match,
not only the quantified variable tree but also the variables opid
and clid in the pattern (in curly braces) are bound to the corre-
sponding parts of the matched input segment. Match expressions
may contain optional elements in square brackets to capture multi-
ple expansion alternatives. The core of the forall formula is an
SMT-LIB S-expression stating that opid and clid are equal. Since
ISLa extends the SMT-LIB language [29], it supports all its string
constraints. A Core-ISLa constraint contains exactly one constant
symbol, which determines the type of described inputs. By default,
this is a symbol start of type ⟨start⟩, which can be customized by
a declaration łconst name: type;ž before the actual constraint.

Simplified ISLa. ISLa’s simplified language layer allows us to
write this constraint much more concisely. Listing 1 is the simpli-
fied version of the Core-ISLa constraint in Listing 2. In simplified
ISLa, we can use the more common, mathematical infix syntax for
binary expressions, i.e., łx = yž instead of ł(= x y).ž Furthermore,
the forall quantifier can be omitted. Instead, we directly use its
type ⟨xml-tree⟩ in the equation. This implicitly adds a forall quan-
tifier over ⟨xml-tree⟩ elements. To access immediate children of
⟨xml-tree⟩ elements, we use a notation inspired by the XPath ab-
breviated syntax [3]. For example, <xml-tree>.<xml-open-tag>
refers to the first ⟨xml-open-tag⟩ element among the children of an
⟨xml-tree⟩ element in a derivation tree, if any.

In simplified ISLa, łin startž in quantifiers is a default and can
be omitted. Furthermore, variable names in quantifiers, such as var
in łforall <type> var="...": ...,ž can be omitted if we are
only interested in the variables bound by the match pattern. Sim-
plified and Core-ISLa syntax can be mixed in the same constraint.
In the end, all constraints are translated to Core-ISLa.

Since ISLa constraints are closed under conjunction (and) and
disjunction (or), it is easy to refine (or relax) constraints. ISLa is
thus well suited for targeted testing, or, e.g., for describing a specific
class of inputs that trigger a bug in a debugging scenario. Thanks
to its declarative nature, it can also be used for formulating human-
readable specifications of the expected inputs of a system.

2.2 Binding Prefixes

Next, we specify a property avoiding łunbound prefixž errors. An
łunbound prefixž error is raised when tag or attribute identifiers in
XML documents contain a namespace prefix, such as ns1 and ns2 in
ł<ns1:tag ns2:attr=". . ."/>,ž which is not declared in the same
or an outer tag. This is an example of a def-use property that is
also common in programming languages: A used identifier must be
defined in some outer scope or at some preceding position. One adds
the attribute łxmlns:ns1="some␣text"ž to declare namespace ns1,
where frequently, the quoted text contains a URL. The property
we aim for is expressed more precisely as: łFor all identifiers with
a prefix 𝑝 , there is a surrounding XML tree 𝑡 such that there is

an attribute xmlns:𝑝 in the attributes list of 𝑡 ’s opening tag.ž We
emphasized words corresponding to ISLa language elements. There
is one subtlety, though: We have to distinguish prefixes in attribute
and tag identifiers, since the special attribute xmlns does not have
to be declared, as it is used precisely to declare other namespaces.

Again, we can express both cases in isolation to incrementally
refine the specification. Here, we regard the slightly more compli-
cated case of prefixes in attribute identifiers. Listing 3 shows the
ISLa specification for this case.

1 forall <xml-attribute> attr="{<id-no-prefix> prefix_use}:{<id-no-

↩→ prefix> maybe_def}=\"<text>\"": (

2 not prefix_use = "xmlns" implies

3 exists <xml-tree> outer_tag=

4 "<<id> {<xml-attribute> a_cont}><inner-xml-tree></<id>>": (

5 inside(attr, outer_tag) and

6 exists <xml-attribute>=

7 "xmlns:{<id-no-prefix> prefix_def}=\"<text>\"" in a_cont:

8 (not prefix_def = "xmlns" and prefix_use = prefix_def)))

Listing 3: ISLa constraint for binding prefixes in attribute

identifiers (reference grammar: Fig. 1)

The ISLa code closely resembles the natural language specifica-
tion we described previously, except that we specialized it to only
quantify over attributes (Line 1) and generally permit the xmlns
prefix (Line 2) using an implication: Only if the prefix is not xmlns,
it must be explicitly defined.

2.3 Targeted Testing

With ISLa specifications, we can go beyond constraints for semantic
validity for application-specific, targeted testing. Imagine an XML
processor that allows associating tags with URLs defined using
dedicated attributes web:baseurl and web:query for base URLs
and query strings. We can enforce the existence of a tag using both
of these attributes somewhere in any produced system input:

exists <xml_attribute> attributes: (

exists <xml-attribute> attr in attributes:

attr.<id> = "web:baseurl" and

exists <xml-attribute> attr in attributes:

attr.<id> = "web:query")

The XML processor performs some input validation and rejects
all inputs where the values of these attributes exceed a length of 100
characters. We force all generated inputs to respect this constraint
by adding the following specification:

forall <xml-attribute>="web:<id-no-prefix>={<text> text}":

str.len(text) <= 100

After parsing an XML file, the processor assembles a complete
URL by joining the base URL and the query string. However, let
us assume its input validation is buggy: The result is stored in a
character array of length 150, and we thus get a buffer overflow

when the base URL and the query string together exceed a length
of 150 characters. We can then explicitly generate inputs triggering
this bug by encoding this property as an ISLa constraint. Such
inputs would be valuable for developers or security researchers, as
a regression test validating a fix for a potential exploit:

forall <xml-attribute> attrs:

forall <xml-attribute> attr_1="web:baseurl={<text> t1}" in attrs:

forall <xml-attribute> attr_2="web:query={<text> t2}" in attrs:

str.len(t1) + str.len(t2) > 150

2.4 Mining Constraints

Constraints like the ones described above can also be mined from
existing inputs. To mine constraints such as the XML constraint in

585

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Dominic Steinhöfel and Andreas Zeller

Listing 2, we create a schematic version of it that is independent of
the choice of a particular grammar:

forall <?NONTERMINAL>="{<?MATCHEXPR(opid, clid)>}": opid = clid

This pattern can be added to the catalog of our ISLearn system,
enabling the system to infer similar constraints for a different gram-
mar. The placeholder <?NONTERMINAL> represents any nontermi-
nal in that grammar; <?MATCHEXPR(opid, clid)> represents any
suitable match expression for an instantiation of <?NONTERMINAL>,
containing two nonterminal occurrences that are bound to variables
opid and clid. ISLearn generates candidate instantiations from
such patterns and then filters those that hold for a set of given or
automatically generated sample inputs. Hence, given a set of XML
inputs, ISLearn can easily learn the constraint in Listing 2.

To avoid overspecialization toward a small set of inputs, ISLearn
can automatically validate constraint candidatesÐby generating
further inputs from them and checking whether these inputs would
be accepted by the program. This also works in debugging scenarios:
If we have a set of inputs for which a specific property holds (say,
the length of some input element exceeds some constant), ISLearn
will not only learn that constraint, but can also ensure that further
instantiations of the constraint reproduce the failure.

2.5 Summary

With these examples, we have demonstrated how ISLa constraints
precisely characterize input classes associated to some program be-
havior. Developers can use these descriptions to obtain semantically

valid inputs, describe the conditions of discovered bugs, and for
targeted triggering of such bugs. Given existing inputs, ISLearn can
determine constraints that precisely characterize input properties
and program behavior.

Note that without ISLa and ISLearn, implementing any of these
constraints can be a tiresome experience. While a handwritten gen-
erator can easily ensure matching XML tags or usage of tags from
a dictionary, proper handling of namespaces is already a challenge
and solving arithmetic constraints over multiple elements will be
increasingly difficult. Extending such a generator to be compos-
able and usable as a parser for checking or mutating inputs will
require an effort comparable to implementing most of ISLa, but the
resulting tool will not be nearly as versatile.

3 ISLA SYNTAX AND SEMANTICS

ISLa constraints are built from a signature of grammar, predicate,
and variable symbols. We first formally define CFGs, following [15,
Chapter 5]; afterward, we introduce ISLa signatures.

Definition 3.1 (Context-Free Grammar). AContext-Free Grammar
(CFG) is a tuple𝐺 = (𝑁,𝑇 , 𝑃, 𝑆) of (1) a set of nonterminal symbols𝑁 ,
(2) a set of terminal symbols𝑇 disjoint from𝑁 , (3) a set of productions
𝑃 mapping nonterminals 𝑛 ∈ 𝑁 to an (expansion) alternative. An
alternative is a string of terminal or nonterminal symbols. Formally,
𝑃 ⊆ 𝑁 × (𝑁 ∪𝑇)∗; and (4) a designated start symbol 𝑆 ∈ 𝑁 .

By convention, we surround nonterminal symbols with angular
brackets (e.g., ⟨start⟩). Signatures contain a special nonterminal
symbol łintž for numeric variables representing derivation trees
whose string representations correspond to a natural number.

Definition 3.2 (ISLa Signature). A signature is a tuple Σ =

(𝐺, PSym,VSym) of a grammar 𝐺 = (𝑁,𝑇 , 𝑃, 𝑆), a set of predicate
symbols PSym of strictly positive arity, and a set of typed vari-
able symbols VSym. The type vtype(𝑣) of 𝑣 ∈ VSym is a symbol
𝑛 ∈ 𝑁 ∪ {int}, int ∉ 𝑁 .

We now define the syntax of Core-ISLa formulas. We assume un-
derspecified sets Trmbool (vars) of Boolean SMT-LIB terms with free
variables vars. These sets contain the constants true and false,
and S-expressions (f 𝑎1 . . . 𝑎𝑛), where f is an 𝑛-ary function
symbol of Bool sort and the 𝑎𝑖 are SMT expressions of suitable
sort. Formulas in Trmbool (vars) may contain uninterpreted string
constants whose names coincide with the names in vars. For the
precise definition of SMT-LIB terms, we refer to the SMT-LIB stan-
dard [1] and the repository of SMT-LIB theories [28]. Apart from
SMT-LIB expressions, quantifiers, and Boolean combinators, ISLa
uses predicate formulas with predicate symbols from PSym. While
our definition of Core-ISLa formulas is parametric in PSym, the ISLa
solver comes with a set of predefined predicates such as inside
from Listing 3. For a list of ISLa’s built-in predicates, we refer to our
electronic appendix [25] and the ISLa language specification [24].

Definition 3.3 (Core-ISLa Formulas). The set Fml of ISLa formulas

for a signature Σ = (𝐺, PSym,VSym), with 𝐺 = (𝑁,𝑇 , 𝑃, 𝑆), is
inductively defined as:

(1) 𝜑 ∈ Fml if 𝜑 ∈ Trmbool (VSym).
(2) 𝑝 (𝑣1, . . . , 𝑣𝑛) ∈ Fml for each predicate symbol 𝑝 ∈ PSym

with arity 𝑛 and 𝑣𝑖 ∈ VSym.
(3) (not 𝜑), (𝜑 and𝜓), (𝜑 or𝜓) are in Fml for 𝜑,𝜓 ∈ Fml.
(4) forall type 𝑥 in 𝑦:𝜑 and exists type 𝑥 in 𝑦:𝜑 are in Fml

for 𝑥,𝑦 ∈ VSym, vtype(𝑥) = type ∈ 𝑁 ∪ {int}, and 𝜑 ∈ Fml.
(5) forall type 𝑥=łmexpž in𝑦:𝜑 and its existential counterpart

exists type 𝑥=łmexpž in 𝑦:𝜑 are in Fml if 𝑥,𝑦 ∈ VSym,
vtype(𝑥) = type ∈ 𝑁 , and 𝜑 ∈ Fml, and mexp is a string
consisting of symbols in 𝑁 ∪𝑇 , non-nested lists ł[· · ·]ž of
such symbols (optional symbols), and variables references
ł{𝑡 𝑣},ž where 𝑣 ∈ VSym and 𝑡 = vtype(𝑣).

We use ł𝜑 implies 𝜓ž as a shorthand for ł(not 𝜑) or 𝜓 .ž
The set Fml is relative to a signature Σ, left implicit for simplicity.

Parentheses can be omitted according to the following precedence
rules: Quantifiers bind stronger than negation, which binds stronger
than conjunction, which binds stronger than disjunction.

We only consider (łtop-levelž) ISLa formulas containing exactly

one unbound variable, which is the default start constant, or the
one specified in the optional const declaration.

Simplified ISLa. The simplified ISLa language features are defined
in terms of a translation to Core-ISLa. We briefly list these features
and sketch how they are mapped; for a more detailed discussion,
we refer to the ISLa language specification [24].

Generalized SMT-LIB expressions. ISLa allows writing binary
SMT-LIB expressions in infix syntax łx op yž and all other
expressions in standardmathematical prefix syntax łf(...).ž
They are mapped to SMT-LIB S-expressions.

Omission of łin start.ž Omitting the łin ...ž part in a quanti-
fied expression is permitted. It defaults to łin start,ž where
start is replaced by an explicitly specified constant, if any.

586

Input Invariants ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

𝑣1 : ⟨xml-tree⟩

𝑣2 : ⟨xml-open-tag⟩

𝑣6 : ‘<’ 𝑣7 : ⟨id⟩

𝑣13 : ‘a’

𝑣8 : ‘>’

𝑣3 : ⟨inner-xml-tree⟩

𝑣5 : ⟨text⟩

𝑣9 : ‘x’

𝑣4 : ⟨xml-close-tag⟩

𝑣10 : ‘</’ 𝑣11 : ⟨id⟩

𝑣14 : ‘a’

𝑣12 : ‘>’

Figure 2: Example XML derivation tree.

Omission of bound variable names. Variable names in quanti-
fiers, such as łvarž in łforall <type> var: ...,ž are op-
tional. The Core-ISLa translation introduces a fresh variable.

Free nonterminals. Nonterminal types can be used instead of
variables in atomic formulas and łin ...ž expressions. The
mapping to Core-ISLa adds a new, top-level forall quanti-
fier binding a fresh variable, and replaces occurrences of the
nonterminal in the original formula with that variable.

łX-Pathł expressions. The notation łparent.<child>[i]ž (child
axis) allows addressing the 𝑖-th immediate <child> element
of parent; ł[i]ž is optional and defaults to ł[1].ž The de-
scendant axis expression łparent..<child>ž refers to all
<child> elements in the subtree of parent (i.e., not only im-
mediate children). Child and descendant axis expressions can
be chained to longer expressions. They can be used instead
of variables in atomic formulas and łin ...ž expressions.
Child axis expressions translate to match expressions; de-
scendant axis expressions to universal quantifiers.

Semantics. The semantics of an ISLa constraint are all strings
derivable from the reference grammar that satisfy the constraint.
To make this precise, we first define derivation trees. Then, we fix
the meaning of ISLa constraints by defining a validation judgment.

Definition 3.4 (Derivation Tree). A derivation tree for a CFG𝐺 =

(𝑁,𝑇 , 𝑃, 𝑆) is a rooted ordered tree such that (1) all vertices 𝑣 are
labeled with symbols label(𝑣) ∈ 𝑁 ∪𝑇 , where the root is labeled
with 𝑆 , (2) if 𝑣1, . . . , 𝑣𝑘 are the children of a node labeled with 𝑛,
then there is a production (𝑛, (𝑠1, . . . , 𝑠𝑘)) ∈ 𝑃 such that for all 𝑣𝑖 ,
label(𝑣𝑖) = 𝑠𝑖 . For a derivation tree 𝑡 , we write leaves(𝑡) for the set
of its leaves, and label(𝑡) for the label of its root. A derivation tree
is closed if 𝑙 ∈ 𝑇 for all 𝑙 ∈ leaves(𝑡), and open otherwise. T (𝐺) is
the set of all (closed and open) derivation trees for 𝐺 .

Example 3.5. Fig. 2 visualizes the derivation tree of the XML doc-
ument ł<a>xž for the XML grammar in Fig. 1: The tree’s root,
𝑣1, is labeled with the grammar’s start symbol ⟨xml-tree⟩; its edges
conform to the possible grammar derivations. Consider, e.g., node 𝑣2
and its immediate children 𝑣6, 𝑣7, and 𝑣8. According to Definition 3.4,
there has to be a production (⟨xml-open-tag⟩, (‘<’, ⟨id⟩, ‘>’)) in the
grammar, which is indeed the case, since ‘<’ ⟨id⟩ ‘>’ is an expansion
alternative (the first one) for the nonterminal ⟨xml-open-tag⟩. The
leaves leaves(𝑡) are {𝑣6, 𝑣13, 𝑣8, 𝑣9, 𝑣10, 𝑣14, 𝑣12}. The tree 𝑡 is closed,
since all leaves are labeled with terminal symbols. It would be open
if we removed the subtree rooted in any tree node (but the root).

We convert a derivation tree to a string (written łstr (𝑡)ž) by
concatenating its leaves in order of their occurrence. If 𝑡 is the tree
from Fig. 2, we have str (𝑡) =ł<a>xž.

Match Expressions. For evaluating ISLa formulas, we have to
match quantified formulas with match expressions against deriva-
tion trees. To that end, we use a partial function match(𝑡,mexpr)
from trees 𝑡 and match expressions mexpr to mappings from vari-
ables to subtrees. We say that there is a match𝑚 for 𝑡 and mexpr if
match returns a such a mapping. Our implementation parses the
match expression and recursively matches the result against 𝑡 .

Validation. We define the semantics of Core-ISLa formulas (the
semantics of the simplified ISLa language features follows from
their translation to Core-ISLa) by a validation judgment 𝜋, 𝜎, 𝛽 |= 𝜑 ,
where 𝜋 and 𝜎 are interpretations of predicate symbols and SMT
expressions, and the variable assignment 𝛽 is a substitution of
derivation trees for variables. The intuition of this judgment is that
𝜑 holds (evaluates to true) when instantiating free variables in 𝜑

according to 𝛽 under the interpretations of predicates and SMT
expressions as provided by 𝜋 and 𝜎 . We write 𝛽 (𝜑) for the substitu-
tion of free variables in 𝜑 by their assignments in 𝛽 , and 𝛽 [𝑣 ↦→ 𝑡]
for the updated assignment where the variable 𝑣 is now mapped
to the tree 𝑡 . For a match𝑚 = match(𝑡,mexpr,), we write 𝛽 [𝑚] for
𝛽 [𝑣1 ↦→ 𝑡1] · · · [𝑣𝑛 ↦→ 𝑡𝑛], where 𝑣𝑖 ↦→ 𝑡𝑖 are all assignments in𝑚.
The primitive substitution of 𝑡 for 𝑣 is denoted by {𝑣 ↦→ 𝑡}. By 𝛽↓

we denote the assignment of variables to strings instead of trees: If
𝛽 associates 𝑣 with 𝑡 , 𝛽↓ associates 𝑣 with str (𝑡).

In the definition of the validation judgment, ⊤ and ⊥ represent
semantic truth and falsity, resp. Note that we expect 𝜎 to always
return ⊤ or ⊥. Timeouts, not uncommon for SMT solvers, are usu-
ally no problem for closed formulas without free variables. Should
the solver time out anyway, we interpret this as ⊥.

Definition 3.6 (ISLa Validation). Let Σ = (𝐺, PSym,VSym) be a
signature, 𝜋 : PSym → T (𝐺)∗ → {⊤,⊥} an interpretation of
predicate symbols, 𝜎 : Trmbool (∅) → {⊤,⊥} an interpretation
of closed SMT S-expressions, and 𝛽 a variable assignment. We
inductively define the judgment 𝜋, 𝜎, 𝛽 |= 𝜑 as

(1) 𝜋, 𝜎, 𝛽 |= 𝜑 iff 𝜑 ∈ Trmbool (∅) and 𝜎 (𝛽
↓(𝜑)) = ⊤.

(2) 𝜋, 𝜎, 𝛽 |= 𝑝 (𝑣1, . . . , 𝑣𝑛) iff 𝜋 (𝑝) (𝛽 (𝑣1), . . . , 𝛽 (𝑣𝑛)) = ⊤.
(3) 𝜋, 𝜎, 𝛽 |= not 𝜑 iff not 𝜋, 𝜎, 𝛽 |= 𝜑 .
(4) 𝜋, 𝜎, 𝛽 |= 𝜑 and𝜓 iff 𝜋, 𝜎, 𝛽 |= 𝜑 and 𝜋, 𝜎, 𝛽 |= 𝜓 .
(5) 𝜋, 𝜎, 𝛽 |= 𝜑 or𝜓 iff 𝜋, 𝜎, 𝛽 |= 𝜑 or 𝜋, 𝜎, 𝛽 |= 𝜓 .
(6) 𝜋, 𝜎, 𝛽 |= forall type 𝑣 in 𝑤:𝜑 iff 𝜋, 𝜎, 𝛽 [𝑣 ↦→ 𝑡] |= 𝜑 holds

for all subtrees 𝑡 in 𝛽 (𝑤) whose root is labeled with type ∈ 𝑁 .
(7) 𝜋, 𝜎, 𝛽 |= forall int 𝑛 in 𝜑: iff 𝜋, 𝜎, 𝛽 [𝑛 ↦→ 𝑡] |= 𝜑 holds for

all trees 𝑡 such that str (𝑡) represents a number in {0, 1, 2, . . . }.
(8) 𝜋, 𝜎, 𝛽 |= exists type 𝑣 in 𝑤:𝜑 iff 𝜋, 𝜎, 𝛽 [𝑣 ↦→ 𝑡] |= 𝜑 holds

for some subtree 𝑡 in 𝛽 (𝑤) whose root is labeled with type ∈ 𝑁 .
(9) 𝜋, 𝜎, 𝛽 |= exists int 𝑛 in 𝜑: iff 𝜋, 𝜎, 𝛽 [𝑛 ↦→ 𝑡] |= 𝜑 holds for

some tree 𝑡 such that str (𝑡) represents a number in {0, 1, 2, . . . }.
(10) 𝜋, 𝜎, 𝛽 |= forall type 𝑣=łmexprž in 𝑤:𝜑 iff 𝜋, 𝜎, 𝛽 [𝑣 ↦→

𝑡] [𝑚] |= 𝜑 holds for all subtrees 𝑡 with root 𝑟 in 𝛽 (𝑤) such
that label(𝑟) = type and there is a match𝑚 = match(𝑡,mexpr).

(11) 𝜋, 𝜎, 𝛽 |= exists type 𝑣=łmexprž in 𝑤:𝜑 iff 𝜋, 𝜎, 𝛽 [𝑣 ↦→
𝑡] [𝑚] |= 𝜑 holds for a subtree 𝑡 with root 𝑟 in 𝛽 (𝑤) such that
label(𝑟) = type and there is a match𝑚 = match(𝑡,mexpr).

587

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Dominic Steinhöfel and Andreas Zeller

Figure 3: ISLa solver schema. Bold arrow lines depict themain

solver loop. Light gray rectangles aremain constraint-solving

components; the remaining ones are auxiliary components.

Example 3.7. Consider the constraint for well-balanced XML
trees from Listing 2, and the XML tree 𝑡 from Fig. 2 for the doc-
ument ł<a>x.ž We evaluate whether this tree is well-formed,
starting from an initial assignment 𝛽 = {start ↦→ 𝑡}. Since the
outermost element of the constraint is a universal formula with
match expression, Item (10) of Definition 3.6 applies. Thus, we have
to prove that 𝜋, 𝜎, {start ↦→ 𝑡}[𝑣 ↦→ 𝑡] [𝑚] |= 𝜑 holds for all in-
stantiations, i.e., tree elements with root ⟨xml-tree⟩ matching the
match expression (i.e., not a self-closing tag). There is a match𝑚 in
𝑡 , instantiating opid to a and clid to a. Thus, it remains to show
that 𝜎 ((= "a" "a")) = ⊤, which is the case.

Definition 3.8 (ISLa Semantics). Let 𝜑 ∈ Fml be an ISLa formula
with the single free variable 𝑐 for the signature (𝐺, PSym,VSym),
and 𝜋 , 𝜎 be interpretations for predicates and SMT formulas. We
define the semantics ⟦𝜑⟧ of 𝜑 as

⟦𝜑⟧ ≔ {str (𝑡) | 𝑡 ∈ T (𝐺) ∧ closed (𝑡) ∧ 𝜋, 𝜎, {𝑐 ↦→ 𝑡} |= 𝜑}.

4 SOLVING ISLA CONSTRAINTS

Our ISLa solver stepwise expands elements from a queue of Condi-
tioned Derivation Trees (CDTs). A CDT is a pair Φ ⊲ 𝑡 , where Φ is a
set of ISLa formulas and 𝑡 aÐpossibly openÐderivation tree. Intu-
itively, the conjunction of the formulas in Φ constrains the inputs
represented by 𝑡 , similarly as ⟦𝜑⟧ constrains the language of the
grammar. Open trees represent the possibly infinite set of deriva-
tion trees that can be derived from them by expansion according to
the grammar rules; imposing constraints potentially reduces the
set of applicable rules and thus the represented concrete trees. On
the other hand, closed derivation trees only stand for themselves. If
a constraint is added to a closed tree, the result is either empty (if
the tree does not satisfy the constraint) or consists of the tree itself.

To enable references to trees in constraints, we assign unique,
numeric identifiers to derivation tree nodes. These identifiers may
be used instead of free variables in ISLa formulas (variables bound
by quantifiers may not be replaced with tree identifiers).

Consider, for example, the ISLa constraint

𝜑 = forall ⟨id⟩ id in start: str.len(id) = 3

constraining the XML grammar in Fig. 1 to identifiers of length
3. Let 𝑡 be a tree consisting of a single (root) node with identifier

1, and labeled with ⟨start⟩. Then, ⟦𝜑⟧ is identical to the strings
represented by the CDT

{forall ⟨id⟩ id in 1: str.len(id) = 3)} ⊲ 𝑡 .

Fig. 3 schematically represents the ISLa constraint solver. We
formalized the solver as a CDT transition system in our electronic
appendix [25]. Starting with the CDT above, the solver expands the
open tree 𝑡 according to the grammar and adds the resulting CDT
into the queue. The queue itself is a priority queue. The order of
CDTs inside the queue is determined by a configurable cost function.

Expansion continues as long as it gets us nearer to matching
the universal quantifier (in the example, until an ⟨id⟩ nonterminal
symbol is contained in the trees resulting from the expansion).
Eventually, the following state will be added to the queue:

{forall ⟨id⟩ id in 1: str.len(id) = 3)} ⊲ <⟨id⟩/>

Now, the universal quantifier matches and is instantiated. Let 4
be the identifier of the subtree labeled with the ⟨id⟩ nonterminal.
Then, we obtain (using bold font for the tree identifier in the SMT
formula resulting from the instantiation):

{str.len(4) = 3,

forall ⟨id⟩ id in 1: str.len(id) = 3)} ⊲ <⟨id⟩/>

The solver now removes the quantified formula from the con-
straint set, since there is no chance of obtaining another ⟨id⟩ by
further expansion. Next, it invokes the SMT solver to obtain a solu-
tion for the formula str.len(4) = 3. If we simply asked the solver
for a string of length 3, we would not necessarily receive an answer
matching the language of the ⟨id⟩ nonterminal; for example, the
solver could produce a sequence of three space characters. Thus,
we use the łGrammar to regexž component to produce a regular ex-
pression describing the desired syntax, which we add to the solver
query. While generally, it is not possible to precisely transform a
CFG into a regular expression, it is often feasible for small sub
grammars, like the one for the ⟨id⟩ nonterminal. Otherwise, we
create an approximate regular expression by unfolding problematic
recursions up to a fixed bound.

The solution returned by the solver is parsed into a derivation
tree and substituted for the subtree with identifier 4; the SMT
formula is removed from the constraint set. This results in a set of
CDTs (the number of solutions requested from the SMT solver is
configurable) with empty constraint sets and closed trees such as
{} ⊲ <abc/>. Since there are no constraints and open tree leaves
left, <abc/> is immediately output as a solution of the constraint.

The solver not only stops tree expansion if it can be sure that no
universal quantifier can eventually be matched by doing so; it also
only expands open subtrees for which this is the case. Consequently,
there are situations where the constraint set is empty, and the
associated derivation tree still open. In that case, any expansion
of the tree is admissible. The solver then calls a standard grammar
fuzzer to close the tree using random expansions (again, the number
of requested solutions is configurable). This procedure ensures that
the solver does not generate too many solutions that look alike by
considering all possible grammar expansions in all cases.

There are twomore constraint solver components, which provide
solutions for existential quantifiers and semantic predicates.

588

Input Invariants ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

Existential Quantifiers. Existential quantifiers (e.g., łthere is an
outer XML tag defining a given namespacež) not matching the cur-
rent derivation tree are eliminated using the łtree insertionž com-
ponent, which searches for opportunities to insert the requested
tree into the existing constrained derivation tree. The inserted tree
contains a node labeled with the nonterminal type of the variable
bound by the quantifier, and optionally contains subtrees for match
expression elements. For the XML namespace example, the compo-
nent will, e.g., replace an existing ⟨xml-tree⟩ subtree with the tree
to insert, and in turn add the replaced tree as a subtree of the in-

serted tree. Tree insertion can cause violations of already eliminated

constraints. Thus, the original constraint is re-inserted afterward.
If none of the already solved constraints were violated, the added
constraint is quickly eliminated again. Alternatively, the added CDT
is discarded, or further insertions are performed

Semantic Predicates. ISLa distinguishes structural and semantic

predicates. Structural predicates, like łinsidež in Listing 3, evalu-
ate to true or false. Semantic predicates, for which specific solvers
have to be implemented, can additionally evaluate to an assignment,
similarly to SMT formulas, or łnot readyž if the result differs for dif-
ferent expansions of open argument derivation trees. We use them
to address shortcomings of SMT solvers or the SMT-LIB language.
Classic use cases are checksum predicatesÐencoding checksums
in SMT-LIB is cumbersome at leastÐand structure-aware predi-
cates like the count predicate used in our CSV case study, which
produces rows with a specific number of columns.

Quantifiers over Integers. Existential numeric quantifiers are elim-
inated by introducing fresh numeric constants. Universal quan-
tifiers are more complicated. If their core restricts the range
of the quantified variable, ISLa enumerates all possible values.
Additionally, the solver implements transformations for formu-
las of a specific structure. For example, formulas of the shape
łforall int i: exists <A> elem: not A(elem, i)ž get

exists int i: (

exists <A> elem': phi(elem', i) and

exists <A> elem: not phi(elem, i))

if A(elem, i) holds for exactly one i when elem is fixed. The
result can be solved by fresh constant introduction.

Conjunctions, Disjunctions, Negations. The solver pushes nega-
tions inside formulas, splits conjunctions into several elements of
the constraint set of one CDT, and disjunctions into several CDTs.

Cost Function. The choice of the cost function impacts the
solver’s performance, both in terms of efficiency (generated in-
puts per second) and diversity (input features covered). Our cost
function computes the weighted geometric mean of different cost
factors. We provide a sensible default weight vector. Furthermore,
weights can be manually configured, and we provide an optimizer
using an evolutionary algorithm for choosing good weights. We
currently consider five cost factors: (1) Tree closing cost.We approx-
imate the cost to close a derivation tree by the sum of the estimated
instantiation effort for all leaf nonterminal symbols. (2) Constraint
cost. This assigns higher cost to constraints that are more expensive
to solve, notably existential quantifiers that have to be eliminated
by tree insertion. (3) Derivation depth. Assigning higher costs to

CDTs generated later in the process can prevent starvation of states
added earlier. (4) k-path coverage. We use the k-path coverage met-
ric [11] to determine the context-sensitive input feature coverage
of derivation trees. We penalize trees covering only few k-paths.
The concrete value of k is configurable; the default is 3. (5) Global
k-path coverage. This factor assigns a higher cost to trees whose kś
paths have already been covered by existing trees in the queue. The
history of covered paths is reset once all paths have been covered.

5 MINING ISLA CONSTRAINTS

The ISLa components introduced so far enable developers to manu-

ally specify input constraints based on an analysis of input formats,
and use the constraints for input validation and generation. With
these constraints, developers do not have to code domain-specific
input generators or checkers; furthermore, ISLa constraints can
easily be refined and specialized, e.g., by adding another constraint
for targeted testing. Yet, the full potential of such a declarative
specification language materializes when we automatically mine

input constraints from samples and automatic experiments. This
enables us to connect any observable program behavior with con-

straints on system inputs. Example behaviors of interest include
normal completion, reaching some point in code, or crashing.

To that end, we developed ISLearn, a miner for input constraints.

ISLearn is inspired by Daikon [7], a tool for learning unit-level pro-
gram invariants from dynamic execution traces. Daikon checks for
invariants from a predefined set of patterns (e.g., value ranges, sort-
edness). ISLearn also uses patterns. The main differences to Daikon
are: (1) ISLearn mines and combines quantified, structure-aware
formulas; Daikon generates invariants over literals or simple collec-
tions, (2) Daikon requires a meaningful test suite to obtain feasible
unit-level execution traces. ISLearn can automatically generate more

inputs satisfying a program property, and reduce those inputs to
their essential features, (3) ISLearn also considers negative inputs
(not satisfying a property) to estimate the specificity of invariants,
and (4) ISLearn can easily be extended with more patterns by adding
them to a human-readable configuration file. Manual extensions
may not be required, though: ISLearn comes with a default catalog
populated with general patterns and patterns inspired by our ISLa
case studies. All these are unique features of ISLearn.

The main inputs to the ISLearn system, apart from a grammar of
the input language (possibly mined by other tools [10, 18]), are sets
of positive and negative sample inputs, and a program property (e.g.,
the program terminates normally). Both are optional: Invariants
can be mined from inputs only, and inputs can be automatically
generated from only the property.

Patterns are defined in a superset of the ISLa language, enriched
with placeholders for nonterminal types (<?NONTERMINAL>), match

expressions (<?MATCHEXPR(params)>, where params is a list of vari-
ables that should be bound in the instantiated match expression,
and string constants (<?STRING>). The <?DSTRINGS> placeholder
can be instantiated by multiple strings; the surrounding, atomic
ISLa formula is expanded for all instantiations.

Consider the constraint for prefix bindings in XML attributes
from Listing 3. We abstract this constraint to an ISLearn pattern
by replacing all nonterminal types and match expressions by cor-
responding placeholders. The constant "xmlns" is abstracted by

589

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Dominic Steinhöfel and Andreas Zeller

forall <?NONTERMINAL> attribute="{<?MATCHEXPR(prefix_use)>}"

in start: (not prefix_use = <?DSTRINGS> implies

exists <?NONTERMINAL> outer_tag="{<?MATCHEXPR(cont_attribute)>}"

in start: (inside(attribute, outer_tag) and

exists <?NONTERMINAL> def_attribute=

"{<?MATCHEXPR(prefix_def)>}" in cont_attribute:

prefix_use = prefix_def))

Listing 4: ISLearn pattern obtained from Listing 3

a <?DSTRINGS> placeholder to permit instantiations by multiple
keywords. The resulting pattern is shown in Listing 4.

This is not the only possible abstraction. In fact, to recover an
equivalent invariant for the original XML constraint, we need to
introduce another variable ns_prefix in the match expression
for def_attribute for binding the constant xmlns, along the con-
straint łns_prefix = <?STRING>.ž However, the pattern in List-
ing 4 is already useful. In our evaluation (Section 6), we applied
ISLearn to languages that did not inform our pattern catalog. One
of our evaluation targets is the Racket language from the Lisp fam-
ily. Since Racket programs are, similarly to XML, tree structures,
the first abstraction of the XML pattern can be instantiated to a
definition-use invariant for Racket. The <?DSTRINGS> placeholder
is instantiated by all functions used in the learning samples, such
as *, +, and sqrt. The constraint prefix_use = <?DSTRINGS> is
expanded to multiple equalities, one for each used function.

We explain how ISLearn works along the example of the
Graphviz DOT language from our evaluation (Section 6.3). We
aim for the invariant that edges in directed graphs (łdigraphž) are
directed (ł->ž), and edges in undirected graphs (łgraphž) are undi-
rected (ł--ž). ISLearn operates in three phases. The input augmen-

tation phase generates more input samples satisfying (positive) and
violating (negative) the program property using a grammar fuzzer

and a grammar-, property-, and k-path-aware mutation fuzzer. The
obtained inputs are optionally reduced afterward. Then, learning
samples are selected from the positive inputs, minimizing their size
while maximizing total k-path coverage. For DOT, example learn-
ing inputs are łgraph { a -- b; }ž and łdigraph { a -> b; }.ž
An example of a negative input is łgraph { a -> b; }.ž

The candidate generation phase instantiates selected patterns
from the catalog based on the given learning inputs in several steps.
For DOT, we can instantiate the pattern łString Existence:ž

exists <?NONTERMINAL> elem in <?NONTERMINAL>:

elem = <?STRING>

For example, the first step instantiates nonterminal placehold-
ers in quantifiers and match expression placeholder arguments.
The results after each instantiation phase are approximately filtered

using an ISLa checker for schematic formulas. The filtering is con-
servative: Whenever some learning input might satisfy a partially
instantiated pattern, that pattern is retained. Two useful instantia-
tions of łString Existencež for DOT are

łexists <GRAPH> elem in <graph>: elem = "graph"ž and
łexists <edgeop> elem in <edge_stmt>: elem = "->".ž
Finally, the filtering and combination phase combines candidate

invariants to conjunctions of disjunctions satisfying configurable
target values for recall and specificity. First, we evaluate for each
candidate which of the positive and negative inputs it satisfies. From
the two learning inputs shown above, the first one satisfies the first
constraint, and the second one the second constraint. Then, we

combine candidates to disjunctions up to a configurable size, such
that the percentage of positive inputs satisfying the combination
exceeds the recall threshold and the recall estimate is greater than
that of both candidates alone. For example, we would combine
the candidate instantiations above, such that the result satisfies
both learning inputs. In the next step, we combine the disjunctions
to conjunctions to maximize the amount of negative inputs not
satisfying the resulting combinations (specificity). For instance, the
negative input łgraph { a -> b; }ž satisfies our newly formed
disjunction. Thus, we combine it to a conjunction with a similarly
shaped disjunction, onlywith łdigraphž and ł--ž instead of łgraphž
and ł->.ž The result has 100% recall and specificity. ISLearn ranks
invariants according to their recall and specificity estimates.

Implementation. The ISLa solver and ISLearn are implemented
in Python.1 We use the Z3 SMT solver and a grammar fuzzer based
on the Fuzzing Book [33] for finishing unconstrained trees. We im-
plemented additional libraries for grammar graph operations (e.g.,
k-paths) and approximating grammars with regular expressions.

6 EVALUATION

To evaluate ISLa and ISLearn, we pose three research questions:

RQ1 To which degree do ISLa constraints contribute to the

efficiency and precision of the input generator? With
this question, we evaluate how much benefit one gets (in
terms of more valid inputs) for how much cost (in terms of
having to specify ISLa constraints).

RQ2 How diverse are inputs generated from ISLa constraints?

Here, we want to ensure that ISLa does not overspecialize (for
instance, by producing only a small set of concrete inputs).

RQ3 What are the recall and specificity of invariants mined

by ISLearn?We evaluate how useful the invariants mined
by ISLearn, and specifically the default patterns, are to de-
scribe the circumstances of normal program behavior.

Evaluation Subjects. To evaluate RQ1 and RQ2, we identified
frequently occurring context-sensitive language properties: (1) Dec-
laration of identifiers (def-use), (2) redefinitionÐidentifiers must not
be declared more than once (redef), and (3) length or counting prop-
erties (len-cnt). For specific languages, we addressed (4) well-bal-
anced XML expressions (łBalancež), (5) correct TAR checksums
(łChecksumž), and (6) consecutive list numbering (łNumberingž).

To cover these properties, we chose input languages of differ-
ent character: (1) One highly structured (XML) and one more hu-
man-readable (reStructuredText (reST))markup language, (2) a data
exchange format (CSV), (3) a programming language (Scriptsize-C),
and (4) a binary format (TAR). Scriptsize-C extends Tiny-C [8] by
explicit variable declarations. For each of these languages, we ex-
tracted grammars from their specifications; for XML, we extended a
pre-existing grammar from the Fuzzing Book [33] with namespace
prefixes. We then added ISLa semantic constraints to all of these.

The TAR archive format represents properties of binary inputs;
it comes with strict length constraints (block sizes) and requires
the computation of a checksum. Checksums are generally out of

1ISLa and ISLearn are available at https://github.com/rindPHI/isla and https://github.
com/rindPHI/islearn. They also are published in the Python Package Index (PyPI), see
https://pypi.org/project/isla-solver/ and https://pypi.org/project/islearn/.

590

https://github.com/rindPHI/isla
https://github.com/rindPHI/islearn
https://github.com/rindPHI/islearn
https://pypi.org/project/isla-solver/
https://pypi.org/project/islearn/

Input Invariants ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

Table 1: Overview of evaluation targets and their properties.

Properties in italic font are not covered by our specifications.

Language Test Target def-use redef len-cnt other

Scriptsize-C clang ✓ ✓ ✗ Nontermination

Overflow
XML xml.etree ✓ ✓ ✗ Balance
TAR tar ✓ ✓ ✓ Checksum
reST rst2html ✓ ✓ ✓ Numbering
CSV csvlint ✗ ✗ ✓ ✗

Racket racket

DOT dot To be mined in Section 6.3
ICMP Echo pythonping

Table 2: ISLa Efficiency, precision, and input diversity

Constraints LOC Efficiency Precision Diversity Length
Inputs/min Inputs/min (%) %k-paths #Chars

(none) Ð 470 113 (24) 53 2 (1)
+ def-use 6 963 136 (14) 51 28 (28)C

+ no-redef 4 387 387 (100) 58 26 (27)
(none) Ð 809 140 (17) 66 10 (5)
+ balance 2 452 95 (21) 85 41 (35)
+ def-use 11 435 60 (14) 78 42 (44)X

M
L

+ no-redef 5 126 126 (100) 91 44 (48)
(none) Ð 572 0 (0) 0 0
+ length 44 20 0 (0) 0 0
+ checksum 3 18 4 (22) 86 3,700 (4,096)T

A
R

+ reference 14 19 19 (100) 87 4,121 (4,096)
(none) Ð 258 88 (34) 100 13 (10)
+ reference 6 492 393 (80) 100 32 (32)
+ length 7 404 379 (94) 100 33 (33)
+ numbering 7 547 534 (98) 100 32 (33)re

ST

+ no-redef 4 404 404 (100) 100 31 (31)
(none) Ð 804 490 (61) 100 9 (8)

C
SV

+ columns 4 127 127 (100) 100 1,103 (828)

The łEfficiencyž column considers all produced inputs; łPrecision,ž łDiversity,ž and
łLengthž only valid (accepted) inputs. łLengthž is the mean (median) length of all valid
inputs. We evaluated k-path coverage for both k=3 and k=4.

the scope of SMT-LIB, which is why we implemented a dedicated
semantic predicate for TAR checksums (15 lines of code).

For ISLearn, we chose three additional languages to evaluate
how well patterns from our catalog transfer to new application
scenarios. Again, we aimed at choosing a diverse range of evaluation
targets: (1) a functional programming language (Racket), (2) a graph
description language (DOT), and (3) a binary format (ICMP packets).

Table 1 gives an overview of languages, test targets, and proper-
ties used in our evaluation. For the ISLearn subjects, we leave the
properties open, since the goal is to discover their invariants. For
ground truth, we chose test targets processing each language.

6.1 RQ1: Precision

ISLa aims to produce more valid inputs, at the effort of specifying
input constraints. Since ISLa is closed under conjunction, specifica-
tions can be added until a satisfying precision is reached. Table 2
relates the lines of ISLa code for a semantic property and the result-
ing precision. The ł(none)ž rows stand for łno constraintž added.
Here, we ran the grammar fuzzer ISLa uses to close unconstrained
open derivation trees. For each language, the rows below ł(none)ž
show the results of the ISLa generator when adding the specified
constraint on top of the ones appearing above. The first constraint
is the one with the most positive effect on precision; similarly for
the others. The łPrecisionž column shows the number of valid in-
puts generated per minute, with the percentage of valid inputs in
parentheses. Only 17% of generated XML inputs are valid without

constraints; 140 valid XML documents are generated perminute. For
TAR, not a single input is valid. The łEfficiencyž column displays the
generation speed irrespectively of validity. With the exception of
TAR, we observe that ISLa generates dozens to hundreds of inputs
per minute, including a high number of valid ones.2 All values are
obtained from the average of two one-hour runs of the generator.

For every constraint added, we provide its length in lines of
Core-ISLa code. For Listing 2 (balance in Table 2), the length is 2.

Mostly, precision increases with each additional constraint. A
typical example is reST, where the first constraint already increases
precision from 34% to 80%. For XML, 18 lines of constraints achieve
100% precision. Without constraints, the 17% of valid inputs are al-
most exclusively made of ⟨xml-openclose-tag⟩ elements only. Of the
inputs containing an ⟨xml-open-tag⟩ element, only 0.03% are valid.

A few ISLa constraints suffice to drastically increase

the percentage of valid inputs.

Interestingly, relative precision declines when adding the def-
use property to XML. This stems from the fact that the solver is
now directed toward introducing more attributes with namespace
prefixes, which introduces more (invalid) attribute repetitions. The
no-redef constraint increases precision up to 100%. A similar phe-
nomenon can be observed for Scriptsize-C. Still, for all subjects, a
few constraints increase the precision to 100%.

ISLa constraints can ensure that all inputs are valid.

Wewould like to emphasize that 100% precision is not a necessary
goal. If 80% valid reST documents are sufficient for testing a reST
processor, one may decide to stop adding constraints after reference.

The most verbose property is the łlengthž property for TAR,
where each field of the archive has to conform to strict length
bounds. Yet, the constraint consists of a conjunction of simple
constraints (most of them two lines only). If we do not provide
length and checksum constraints, we cannot produce even a single
valid TAR file.

6.2 RQ2: Diversity

A test generator should produce inputs exercising different lan-
guage features, by which one can expect to reach different paths
in the language processor [11]. Essentially, 100% precision can be
reached by always producing the same, small input. To validate
that ISLa generates diverse and thus interesting inputs, we compute
their accumulated k-path coverage [11], assessing how many paths
of length 𝑘 in the grammar are present in a derivation tree. The
higher the 𝑘-path coverage, the higher the diversity.

The łDiversityž column in Table 2 shows the percentage of ac-
cumulated 3- and 4-paths during a one-hour run per all 3/4-paths
in the grammar. For example, generating XML documents from the
grammar only achieves 66% coverage, while we cover 91% of all
3/4-paths when adding all three constraints. We only count valid
inputs accepted by the program under test.

Generally, inputs produced by ISLa have better diversity than
inputs produced without constraints. Only for Scriptsize-C, there

2There is much potential in optimizing ISLa for speed; e.g., parallel processing of the
solver queue and solving simple formulas such as equations without SMT solver calls.

591

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Dominic Steinhöfel and Andreas Zeller

is a small decrease in diversity after adding the first constraint; this
is compensated after the addition of the second.

To shed some light on the solver’s behavior for CSV and
Scriptsize-C, we collected information about input length. Length is
not a particularly good coverage measure: One can always choose,
e.g., long identifiers. However, we observe that, in particular for
CSV and C, most inputs generated by the grammar fuzzer are triv-
ial; the most common valid C program generated by the grammar
fuzzer is ł;ž. In general, the ISLa solver clearly outperforms the
grammar fuzzer in terms of the complexity of the generated inputs.

ISLa covers the diversity of the underlying grammar.

6.3 RQ3: ISLearn

We populated the pattern catalog for ISLearn with abstractions of
the patterns used for the ISLa evaluation targets. In addition, we
added some simple properties about magic constants, most notably
łString Existencež from Section 5. In this research question, we
assess how well ISLearn can be used to mine invariants describing
circumstances of normal program behavior (i.e., whether an input
is accepted by the program under test) with these patterns. We
are particularly interested in two questions: (1) If an input is valid
(accepted by the program), what is the probability that the mined
invariant classifies the input as such (i.e., the ISLa solver reports
that the input satisfies the invariant)? This is captured by the recall
of the invariant. (2) Conversely, if an input is invalid, what are the
chances that the mined invariant classifies it accordingly? This is
assessed by the specificity of the invariant.

To evaluate recall and specificity, we chose seed sets of training
and validation inputs. For Racket andDOT, we obtained valid Racket
and DOT files from GitHub. We separated those inputs into sets
of training and validation inputs of equal size. Subsequently, we
expanded the training and validation sets to 50 inputs each using
both a mutation-based and a grammar fuzzer. Similarly, we collect
negative inputs (not accepted by the programs under test) into sets
of negative training and validation inputs, each of size 50. For ICMP
Echo, our third evaluation target, we generated random, valid echo
request and reply packets using the łpythonpingž library. To obtain
negative samples, we created arbitrary (not necessarily Echo) ICMP
packets, 20% of those with an incorrect checksum value.

ISLearn already estimates recall and specificity of invariant can-
didates based on the supplied sample inputs and returns the top-
ranked result. We assessed the quality of that invariant using the
validation sets. If, e.g., an input from the positive validation set does
not satisfy the invariant, the input is a false negative (FN).

Table 3 presents the confusion matrices for our evaluation. For
DOT, ISLearn discovered the invariant that edges in directed graphs
are directed (->), and undirected (--) for undirected graphs. The
invariant is slightly too weak, as it only requires one correct edge in
each łedge statement,ž which, however, can contain multiple (right
orwrong) edges. In the case of ICMPEcho packets, the system learns
that the value of the łtypež is 0 (reply) or 8 (response). It wrongly
classifies three packets with wrong checksums as valid. Adding
a pattern for a semantic predicate computing internet checksum

achieves 100% specificity. Both of these invariants are obtained
from combined instantiations of the łstring existencež pattern. We

Table 3: Confusion matrices for RQ3

(a) DOT

Classified as

Input True False Total

True TP = 50 FN = 0 50
False FP = 8 TN = 42 50
Total 58 42 100

Recall = 100%, Specificity = 84%

Precision = 86%, Accuracy = 92%

(b) ICMP Echo

Classified as

Input True False Total

True TP = 50 FN = 0 50
False FP = 3 TN = 47 50
Total 53 47 100

Recall = 100%, Specificity = 94%

Precision = 94%, Accuracy = 97%

(c) Racket (XML pattern)

Classified as

Input True False Total

True TP = 36 FN = 14 50
False FP = 8 TN = 42 50
Total 44 56 100

Recall = 72%, Specificity = 84%

Precision = 82%, Accuracy = 78%

(d) Racket (XML + reST pattern)

Classified as

Input True False Total

True TP = 36 FN = 14 50
False FP = 5 TN = 45 50
Total 41 59 100

Recall = 72%, Specificity = 90%

Precision = 88%, Accuracy = 81%

already mentioned that a def-use invariant for variables in Racket
can be obtained from a pattern derived from an XML invariant; this
leads to 72% recall and 84% specificity. Onemissing semantic feature
is a def-use property for functions. We discovered that by weakening
the def-use pattern obtained from reST, taking into account pre-
defined function symbols that have not been defined, we obtain a
suitable invariant for this property. The confusionmatrix in Table 3d
demonstrates that this increases specificity to 90%. TheÐcompared
to DOT and ICMPÐlow recall stems from the fact that not all pre-
defined functions appear in the training set.

ISLearn mines invariants of high recall and specificity based on

patterns for re-occurring input properties.

6.4 Threats to Validity

We supported our claim that ISLa is a useful specification language
by expressing context-sensitive properties of five subject input
languages. Whether indeed ISLa is sufficiently expressive and its
solver sufficiently precise depends onwhether our choice of subjects
is representative. There is a potential threat of overfitting, i.e., that
we designed ISLa and ISLearn to exactly fit the test subjects. We
mitigate this threat by choosing diverse languages, i.e., not only
programming ormarkup languages, or binary formats, but amixture

of those. Furthermore, we identified and clustered context-sensitive
properties of the test subjects. This supports the claim that those
are representative and can be transferred to different targets, as
does the fact that an XML pattern could be used for Racket.

7 RELATED WORK

Parser Specifications. ISLa provides a framework to specify input

requirements, or preconditions, of a program. It targets the sys-
tem level, where inputs are generally strings. Parser generators like
ANTLR3 and the pioneer yacc [16] promoted CFGs for specify-
ing complex structured inputs. However, specifications designed
for parsing inputs are rarely specific enough to also be used for
producing valid inputs, which is the gap that ISLa fills.

3https://www.antlr.org/

592

https://www.antlr.org/

Input Invariants ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

Attribute Grammars. Attribute grammars [17] associate gram-
mar symbols with synthesized and derived attributes. This allows
checking semantic properties; if attributes use a general-purpose
programming language, one can express arbitrarily complex seman-
tic properties. The meta-compiler JastAdd [12], for instance, sup-
ports imperative specifications in Java; the same holds for ANTLR
(Java) and yacc (C). ISLa’s mix of quantifiers, structural predicates,
and SMT-LIB assertions allows expressing important input proper-
ties and can be used for parsing and producing inputs alike.

Grammar-Based Test Generation. Context-Free Grammars are
well suited for syntax-aware test input generation. CSmith [31] and
LangFuzz [14] use CFGs as a basis to randomly create syntactically
valid C and JavaScript programs, respectively; Grammarinator [13]
produces inputs from ANTLR grammars. The underlying gram-
mars are typically handwritten, but can also be mined from pro-
grams [10] and inputs [18]. ISLa fits between Grammarinator and
CSmith: It can produce inputs from different language models like
Grammarinator, but fulfills semantic properties like CSmith. Yet, the
probability that Grammarinator will create a valid TAR file from a
CFG approaches zero, and CSmith can only generateÐwellÐC files.

Test Generation with Semantic Properties. FormatFuzzer [6] is
a fuzzer for binary formats. It is parameterized with binary tem-

plates as language models. Those resemble C structs, but come with
added code for satisfying semantic constraints, including complex
expressions, control statements, and functions. These constraints
are strictly local, though, mainly supporting checksums and length
fields for binary formats. Non-local and complex constraints, such
as def-use properties, have to be programmatically implemented.
ISLa’s constraints, in contrast, are declarative, can apply to arbitrary
elements in the derivation tree, and are easily solved using Z3.

Pan et al. [22] useHigher-Order Attribute Grammars [30] for fuzz
testing, providing custom predicates for parse tree manipulation
(e.g., length constraints and checksum computation) in a general-
purpose programming language. The approach neither supports
parsing nor generation from scratch.

Dewey et al. [5] propose to program grammars and constraints
in Prolog using its Constraint Logic Programming (CLP) library for
language-based test generation. All their predicates are application-
specific, which is the exception for ISLa. There is no tool such as
ISLearn to infer Prolog programs. ISLa supports all Z3 theories,
whereas CLP only supports integer arithmetic. Finally, CLP-based
language fuzzers cannot be used for parsing.

Property-Based Testing. Pioneered by QuickCheck [2], Property-
Based Testing (PBT) produces data structures of the host language
to test individual functions against user-defined properties. This al-
lows expressing features in the host programming language, which
is not available when working with unstructured system inputs.
ProSyT [4] and Luck [19] generate data structures for Erlang and
Haskell, resp., separating semantic constraints from data types.

Generally, the concept of parsing and mutating existing data is
not present in PBT. One exception is Zest [21], which leverages
program feedback to create syntactically valid input mutants exer-
cising interesting program paths. The central difference between
ISLa and all PBT approaches is that ISLa operates at the system
level, producing system inputs rather than internal data structures.

Mining Invariants. Daikon [7] is the seminal work for extracting
invariant candidates from program executionsÐpre- and postcon-
ditions as well as data invariants; its pattern matching approach
is the inspiration for ISLearn. Recent advances in the field focus
on program verification, loop invariants, and the usage of neural
networks [32]. Unlike ISLearn, all these approaches operate at the
unit level, and cannot generate targeted executions to refine invari-
ants. To the best of our knowledge, ISLearn is the first approach to
specify, determine, and refine invariants at the system level.

8 CONCLUSION AND FUTUREWORK

We proposed ISLa, a declarative specification language for context-
sensitive constraints of system inputs. In our framework, syntactic
language constraints are specified using Context-Free Grammars
(CFGs), which are great for parsing, but often too coarse for gener-
ating inputs. Context-sensitive refinements are expressed by ISLa
constraints, using the vocabulary defined by the CFG. We formally
defined ISLa’s syntax and semantics and demonstrated that our ISLa
solver can be used to generate semantically correct inputs signifi-
cantly faster than by generating from a CFG alone. Furthermore, we
introduced the ISLearn input invariant miner, which automatically
produces useful ISLa specifications based on a program property
and/or sample inputs.

Besides further refining the ISLa and ISLearn implementation,
our future work will focus on the following topics:

Fuzzer integration. ISLa-generated inputs can serve as high-
quality seed inputs for graybox fuzzers like AFL; ISLa’s check-
ers can quickly filter out invalid generated inputs. Further-
more, ISLa could improve the performance of hybrid fuzzers
by serving as a language for exchanging constraints between
the symbolic execution and fuzzing components. This idea
has been put forward by the authors of the Driller [27] paper,
but has not yet been put into practice.

Testing strategies. Aprobabilistic variant of ISLearn could quickly
learn which input features correlate with program behaviors
(including failures or specific coverage); this allows for test
generation techniques exploring syntax and semantics.

Constraint synthesis. Besides checking patterns, techniques from
program synthesis would have great potential for generating
constraints from examples.

Constraints as oracles. As ISLa allows extracting and assessing
arbitrary input elements, it can also check outputs for con-
straints. This allows using ISLa constraints as oracles (that
could also be learned via ISLearn).

Detecting anomalies. Decomposing inputs and outputs provides
plenty of syntactical and semantic features that can be used
for learning commonalities and anomalies; learned correla-
tions can be reinforced by ISLa-generated tests.

DATA AVAILABILITY STATEMENT

Our evaluated ISLa and ISLearn artifacts are publicly available [26].
The current versions of the prototypes can be downloaded from

https://github.com/rindPHI/isla
https://github.com/rindPHI/islearn

593

https://github.com/rindPHI/isla
https://github.com/rindPHI/islearn

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Dominic Steinhöfel and Andreas Zeller

REFERENCES
[1] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2017. The SMT-LIB Standard:

Version 2.6. Technical Report. Department of Computer Science, The University
of Iowa. Available at www.SMT-LIB.org.

[2] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for
Random Testing of Haskell Programs. In Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming (ICFP), Martin Odersky and
Philip Wadler (Eds.). ACM, 268ś279. https://doi.org/10.1145/351240.351266

[3] James Clark and Steve DeRose. 1999. XML Path Language (XPath), 2.5: Abbrevi-
ated Syntax. https://www.w3.org/TR/1999/REC-xpath-19991116/#path-abbrev
Accessed: 2022-08-23.

[4] Emanuele De Angelis, Fabio Fioravanti, Adrián Palacios, Alberto Pettorossi, and
Maurizio Proietti. 2019. Property-Based Test Case Generators for Free. In Tests
and Proofs - 13th International Conference, TAP@FM 2019, Porto, Portugal, October
9-11, 2019, Proceedings (Lecture Notes in Computer Science, Vol. 11823), Dirk Beyer
and Chantal Keller (Eds.). Springer, 186ś206. https://doi.org/10.1007/978-3-030-
31157-5_12

[5] Kyle Dewey, Jared Roesch, and Ben Hardekopf. 2014. Language Fuzzing Using
Constraint Logic Programming. In ACM/IEEE International Conference on Auto-
mated Software Engineering, ASE 2014, Ivica Crnkovic, Marsha Chechik, and Paul
Grünbacher (Eds.). ACM, 725ś730. https://doi.org/10.1145/2642937.2642963

[6] Rafael Dutra, Rahul Gopinath, and Andreas Zeller. 2021. FormatFuzzer: Effective
Fuzzing of Binary File Formats. CoRR abs/2109.11277 (2021). arXiv:2109.11277
https://arxiv.org/abs/2109.11277

[7] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. 1999.
Dynamically Discovering Likely Program Invariants to Support Program Evolu-
tion. In Proceedings of the 1999 International Conference on Software Engineering,
(ICSE), Barry W. Boehm, David Garlan, and Jeff Kramer (Eds.). ACM, 213ś224.
https://doi.org/10.1145/302405.302467

[8] Marc Feeley. 2001. Tiny-C Compiler. https://www.iro.umontreal.ca/~felipe/
IFT2030-Automne2002/Complements/tinyc.c. Accessed: 2021-10-06.

[9] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. 2008. Grammar-Based
Whitebox Fuzzing. In Proceedings of the ACM SIGPLAN 2008 Conference on Pro-
gramming Language Design and Implementation (PLDI), Rajiv Gupta and Saman P.
Amarasinghe (Eds.). ACM, 206ś215. https://doi.org/10.1145/1375581.1375607

[10] Rahul Gopinath, Björn Mathis, and Andreas Zeller. 2020. Mining Input Grammars
from Dynamic Control Flow. In Proceedings 28th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FST), Prem Devanbu, Myra B. Cohen, and Thomas Zimmermann (Eds.).
ACM, 172ś183. https://doi.org/10.1145/3368089.3409679

[11] Nikolas Havrikov and Andreas Zeller. 2019. Systematically Covering Input
Structure. In 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 189ś199. https://doi.org/10.1109/ASE.2019.00027

[12] Görel Hedin and Eva Magnusson. 2001. JastAddÐA Java-Based System for
Implementing Front Ends. Electron. Notes Theor. Comput. Sci. 44, 2 (2001), 59ś78.
https://doi.org/10.1016/S1571-0661(04)80920-4

[13] Renáta Hodován, Ákos Kiss, and Tibor Gyimóthy. 2018. Grammarinator: A
Grammar-Based Open Source Fuzzer. In Proceedings of the 9th ACM SIGSOFT
InternationalWorkshop on Automating TEST Case Design, Selection, and Evaluation,
Wishnu Prasetya, Tanja E. J. Vos, and Sinem Getir (Eds.). ACM, 45ś48. https:
//doi.org/10.1145/3278186.3278193

[14] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with Code
Fragments. In Proceedings of the 21th USENIX Security Symposium, Tadayoshi
Kohno (Ed.). USENIX Association, 445ś458. https://www.usenix.org/conference/
usenixsecurity12/technical-sessions/presentation/holler

[15] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. 2007. Introduction to
Automata Theory, Languages, and Computation, 3rd Edition. Addison-Wesley.

[16] Stephen C Johnson. 1979. Yacc: Yet Another Compiler-Compiler. https://www.
cs.utexas.edu/users/novak/yaccpaper.htm. Accessed: 2021-11-19.

[17] Donald E. Knuth. 1990. The Genesis of Attribute Grammars. In Proceedings of the
International Conference on Attribute Grammars and their Applications (Lecture
Notes in Computer Science, Vol. 461), Pierre Deransart and Martin Jourdan (Eds.).
Springer, 1ś12. https://doi.org/10.1007/3-540-53101-7_1

[18] Neil Kulkarni, Caroline Lemieux, and Koushik Sen. 2021. Learning Highly Recur-
sive Input Grammars. In 36th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2021, Melbourne, Australia, November 15-19, 2021. IEEE,
456ś467. https://doi.org/10.1109/ASE51524.2021.9678879

[19] Leonidas Lampropoulos, Diane Gallois-Wong, Catalin Hritcu, John Hughes, Ben-
jamin C. Pierce, and Li-yao Xia. 2017. Beginner’s Luck: A Language for Property-
Based Generators. In Proceedings of the 44th ACM SIGPLAN Symposium on Princi-
ples of Programming Languages (POPL) 2017, Giuseppe Castagna and Andrew D.
Gordon (Eds.). ACM, 114ś129. https://doi.org/10.1145/3009837.3009868

[20] Barton P. Miller, Lars Fredriksen, and Bryan So. 1990. An Empirical Study of
the Reliability of UNIX Utilities. Commun. ACM 33, 12 (1990), 32ś44. https:
//doi.org/10.1145/96267.96279

[21] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves Le
Traon. 2019. Semantic Fuzzing with Zest. In Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA), Dongmei
Zhang and Anders Mùller (Eds.). ACM, 329ś340. https://doi.org/10.1145/3293882.
3330576

[22] Fan Pan, Ying Hou, Zheng Hong, Lifa Wu, and Haiguang Lai. 2013. Efficient
Model-based Fuzz Testing Using Higher-order Attribute Grammars. J. Softw. 8, 3
(2013), 645ś651. https://doi.org/10.4304/jsw.8.3.645-651

[23] Alan J. Perlis. 1982. Epigrams on Programming. ACM SIGPLAN Notices 17, 9
(1982), 7ś13. https://doi.org/10.1145/947955.1083808

[24] Dominic Steinhöfel. 2022. The ISLa Language Specification. https://rindphi.
github.io/isla/islaspec/ Accessed: 2022-08-23.

[25] Dominic Steinhöfel and Andreas Zeller. 2022. Electronic Appendix to łInput
Invariantsž. CoRR abs/2208.12049 (2022). https://doi.org/10.48550/arXiv.2208.
12049 arXiv:2208.12049

[26] Dominic Steinhöfel and Andreas Zeller. 2022. Replication Package for łInput
Invariantsž. https://doi.org/10.1145/3554336

[27] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution. In
23rd Annual Network and Distributed System Security Symposium, NDSS 2016, San
Diego, California, USA, February 21-24, 2016. The Internet Society.

[28] The SMT-LIB Initiative. 2021. SMT-LIB Theories. http://smtlib.cs.uiowa.edu/
theories.shtml. Accessed: 2021-10-19.

[29] Cesare Tinelli, Clark Barrett, and Pascal Fontaine. 2020. Theory Strings (SMT-LIB
Version 2.6). http://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml. Accessed:
2021-10-07.

[30] Harald Vogt, S. Doaitse Swierstra, and Matthijs F. Kuiper. 1989. Higher-Order
Attribute Grammars. In Proceedings of the ACM SIGPLAN’89 Conference on Pro-
gramming Language Design and Implementation (PLDI), Richard L. Wexelblat
(Ed.). ACM, 131ś145. https://doi.org/10.1145/73141.74830

[31] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Un-
derstanding Bugs in C Compilers. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI) 2011,
Mary W. Hall and David A. Padua (Eds.). ACM, 283ś294. https://doi.org/10.1145/
1993498.1993532

[32] Jianan Yao, Gabriel Ryan, JustinWong, Suman Jana, and Ronghui Gu. 2020. Learn-
ing Nonlinear Loop Invariants with Gated Continuous Logic Networks. In Pro-
ceedings of the 41st ACM SIGPLAN Conference on Programming Language Design
and Implementation (London, UK) (PLDI 2020). Association for Computing Ma-
chinery, New York, NY, USA, 106ś120. https://doi.org/10.1145/3385412.3385986

[33] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian
Holler. 2021. Grammar Coverage. In The Fuzzing Book. CISPA Helmholtz Center
for Information Security. Accessed: 2021-11-13.

594

https://doi.org/10.1145/351240.351266
https://www.w3.org/TR/1999/REC-xpath-19991116/#path-abbrev
https://doi.org/10.1007/978-3-030-31157-5_12
https://doi.org/10.1007/978-3-030-31157-5_12
https://doi.org/10.1145/2642937.2642963
https://arxiv.org/abs/2109.11277
https://arxiv.org/abs/2109.11277
https://doi.org/10.1145/302405.302467
https://www.iro.umontreal.ca/~felipe/IFT2030-Automne2002/Complements/tinyc.c
https://www.iro.umontreal.ca/~felipe/IFT2030-Automne2002/Complements/tinyc.c
https://doi.org/10.1145/1375581.1375607
https://doi.org/10.1145/3368089.3409679
https://doi.org/10.1109/ASE.2019.00027
https://doi.org/10.1016/S1571-0661(04)80920-4
https://doi.org/10.1145/3278186.3278193
https://doi.org/10.1145/3278186.3278193
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://www.cs.utexas.edu/users/novak/yaccpaper.htm
https://www.cs.utexas.edu/users/novak/yaccpaper.htm
https://doi.org/10.1007/3-540-53101-7_1
https://doi.org/10.1109/ASE51524.2021.9678879
https://doi.org/10.1145/3009837.3009868
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/3293882.3330576
https://doi.org/10.1145/3293882.3330576
https://doi.org/10.4304/jsw.8.3.645-651
https://doi.org/10.1145/947955.1083808
https://rindphi.github.io/isla/islaspec/
https://rindphi.github.io/isla/islaspec/
https://doi.org/10.48550/arXiv.2208.12049
https://doi.org/10.48550/arXiv.2208.12049
https://arxiv.org/abs/2208.12049
https://doi.org/10.1145/3554336
http://smtlib.cs.uiowa.edu/theories.shtml
http://smtlib.cs.uiowa.edu/theories.shtml
http://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml
https://doi.org/10.1145/73141.74830
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/3385412.3385986

	Abstract
	1 Introduction
	2 ISLa by Example
	2.1 Matching Tags
	2.2 Binding Prefixes
	2.3 Targeted Testing
	2.4 Mining Constraints
	2.5 Summary

	3 ISLa Syntax and Semantics
	4 Solving ISLa Constraints
	5 Mining ISLa Constraints
	6 Evaluation
	6.1 RQ1: Precision
	6.2 RQ2: Diversity
	6.3 RQ3: ISLearn
	6.4 Threats to Validity

	7 Related Work
	8 Conclusion and Future Work
	References

