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Abstract. We propose the trace modality, a concept to uniformly ex-
press a wide range of program verification problems. To demonstrate its
usefulness, we formalize several program verification problems in it: Func-
tional Verification, Information Flow Analysis, Temporal Model Check-
ing, Program Synthesis, Correct Compilation, and Program Evolution.
To reason about the trace modality, we translate programs and spec-
ifications to regular symbolic traces and construct simulation relations
on first-order symbolic automata. The idea with this uniform represen-
tation is that it helps to identify synergy potential—theoretically and
practically—between so far separate verification approaches.

1 Introduction

Since the foundational work on program verification during the 1960s [17], the
program verification tasks that were studied have much broadened beyond mere
functional (partial or total) correctness. Basic variations include termination [14],
reachability [25], and program synthesis [16]. Starting in the early 2000s, verifi-
cation of relational properties of programs, such as information flow [8], correct
compilation [21], or correctness of program transformations (refactoring) [12] has
been in the focus of interest. Relational properties compare two programs having
similar behavior. It is even more challenging to reason about programs having
related, but intentionally differing behavior, such as in program evolution [13].

For all these tasks dedicated verification approaches were developed: dynamic
logic [15], Hoare quadruples [30], self composition [4,8], product programs [3],
etc. Usually, the verification problem to be solved is stated informally, and then
the problem is directly formalized in the approach to be used for its solution.
Hence, the formalism that a problem is stated in and the formalism where it is
solved, are conflated. We consider this problematic for two reasons:
(1) Premature commitment to a specific solution approach. If one has

invested to master a specific methodology, the temptation to solve any prob-
lem by modifying or extending the familiar is considerable, even if a different
approach would have been more efficient, flexible, or easily extensible: The
well-known “for a hammer the world consists of nails” effect.
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(2) Hard to detect commonalities and to transfer results. One of the
most powerful scientific stratagems is to detect structural similarity among
different problem areas. This makes it possible to transfer insights and so-
lutions from one problem space to another. In formal verification, this addi-
tionally opens the road to re-use of software tools for new tasks. To be able
to spot commonalities, it is essential to know which aspects of a problem are
genuinely new and hence require a novel approach. However, if a problem
is already formalized in terms of a specific solution method, it is hard to
identify commonality and analogy.
Experience with various software verification problems [14,8,1,28] let us re-

alize that a small number of principles occur time and again in dedicated ver-
ification approaches: (1) abstraction of program runs in the sense of abstract
interpretation [7]; (2) approximation of a set of program runs by a superset;
(3) the capability to handle schematic programs, i.e. programs with unspecified
parts. Abstraction makes it possible to compare programs written in different
languages via a suitable abstraction of their traces. Approximation is needed
to focus on a specific property and “forget” irrelevant information. Finally, to
reason about program transformation (synthesis, compilation, refactoring, etc.)
it is essential to be able to specify a program fragment in an unknown context.
We propose a framework based on these principles that lets one express a wide
variety of verification problems in a uniform, comparable manner.

We make only one assumption about the programs under verification: They
must have a trace semantics, i.e. for an initial execution state s and a program
p we can obtain the set of all traces (“program runs”) that are possible when p
is started in s. Our framework builds on the semantic notion of a trace modality
[Cl 
α Cr], and a reasoning system based on regular symbolic traces and simu-
lations on symbolic automata. The expression [Cl 
α Cr] is valid if the traces
arising from the implementation Cl are approximated by the traces of the spec-
ification Cr after the abstraction step defined by α, where implementation and
specification may be either programs (potentially containing abstract contexts)
or formulas (e.g., in first-order or temporal logic). Symbolic traces approximate
concrete traces. Our reasoning system translates implementation and specifica-
tion to symbolic traces, transforms these to symbolic automata, and finally shows
language inclusion by constructing a simulation relation “up to subsumption”.

The paper is structured as follows. Sect. 2 defines elementary notions used in
the paper. The semantics of the trace modality is described in Sect. 3, where we
also formalize various verification tasks using the trace modality to demonstrate
its expressiveness. In Sect. 4, we describe our reasoning system based on symbolic
traces. Finally, Sect. 5 discusses related work, and Sect. 6 concludes the paper
and describes future work opportunities. For space reasons, we moved some
details of the paper (detailed examples, longer remarks) to an appendix, available
at www.key-project.org/papers/trace-modality/.

https://www.key-project.org/papers/trace-modality/


The Trace Modality 3

2 Programs, Logic, Traces and Abstractions

We assume an imperative programming language L with the usual sequencing
and assignment operators “;”, “=”. Programs may contain schematic statements,
denoted with capital letters P, Q, etc. A program without schematic statements is
called concrete. The set of concrete programs is L0. A program p with schematic
statements represents the set Concr(p) of all well-formed L0-programs obtained
by replacing each schematic statement in p with an arbitrary concrete statement.

At each point during the execution of a program p ∈ L0 it is in a state s ∈ S,
mapping program variables to domain values. To model failed assertions, we
distinguish a state ⊥. We write S⊥ for S ∪ {⊥}. A trace τ is a possibly infinite
sequence of states, denoted s0s1 · · · sn or s0s1 · · · (the latter being infinite). For
the empty trace we write ε and Traces = (S⊥)∗ ∪ (S⊥)ω for the set of all traces.
Predicate finite(τ) holds for finite traces and first(τ), last(τ) select a trace’s first
and final state (the latter is only defined for finite traces).

We assume a trace semantics Trs(p) that maps a concrete program p ∈ L0
and initial state s ∈ S into the set of possible traces when p is started in s.
When L0 is deterministic, this is a singleton. We define the set of all traces of
p ∈ L0 as Tr(p) = {Trs(p) | s ∈ S}. If P is a set of concrete programs, then
Tr(P) = {Tr(p) | p ∈ P}, similar for Trs(P). Now we define the semantics of a
schematic program p ∈ L as Tr(Concr(p)) and Trs(Concr(p)), respectively.

Let PVar denote the set of program variables and “◦” the usual function
composition operator. We define abstraction operators α : 2Traces → 2Traces (in
the sense of abstract interpretation [7]) on sets of traces T :
Big-step abstraction: αbig(T ) = {(s0, sn) | s0 · · · sn ∈ T }, i.e. the set of all

pairs of the first and last state of any finite trace in T . Observe that for
infinite traces in T , there is no corresponding pair in the abstracted set.

Observation abstraction: Let obs ⊆ PVar, s ∈ S, then s ↓ obs is the state s
restricted to values from obs. We define the observation abstraction relative
to obs as αobs(T ) = {(s0 ↓ obs)(s1 ↓ obs) · · · | s0s1 · · · ∈ T }. For a concrete
set of variables, for instance {x}, we write α{x}.

Data abstraction: Let αd be an abstract operator on data types in p [7]. We
define the data abstraction of a set of traces as αd(T ) = {αd(s0)αd(s1) · · · |
s0s1 · · · ∈ T }, where the state αd(s)(x) = αd(s(x)) is defined pointwise.

Combination: Combine two abstractions α1, α2 by composition α1 ◦ α2.
We use a standard first-order language with equality. It contains the usual

propositional connectives and first-order quantifiers. Terms and formulas are
standard, but we permit trace modality formulas [Tl 
α Tr] as atomic formulas.
With Trm and Fml we denote the sets of all terms and formulas. The semantics
of a formula is provided by a first-order structure K and a state s ∈ S that define
the validity relation K, s |= ϕ for each ϕ ∈ Fml. For example, K, s |= ϕ→ ψ iff
either K, s 6|= ϕ, or K, s |= ϕ and K, s |= ψ. Given s ∈ S, write s |= ϕ and say ϕ
is valid for s if K, s |= ϕ for all K. Write |= ϕ and say that ϕ is valid if s |= ϕ for
all s ∈ S. While K interprets rigid first-order functions and predicates, a state s
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assigns values to program variables that may change during execution. For the
failure state ⊥ we set K,⊥ 2 ϕ for any K, ϕ.

We need assert(ϕ) and assume(ϕ) statements for asserting and assuming
a first-order formula ϕ in a program. Our use cases are program synthesis for
assert and invariant reasoning (appendix) for assume statements. For assert,
we define Trs(assert(ϕ)) = {s} if s |= ϕ and {⊥} otherwise. The semantics of
assume is defined as Trs(assume(ϕ)) = {s} if s |= ϕ and ∅ otherwise. We define
a full trace semantics for a simple L0-language in the appendix.

3 The Trace Modality

We define the trace modality [Tl 
α Tr], where the implementation Tl and spec-
ification Tr both are (possibly infinite) trace sets and α is a trace abstraction.
It expresses that the specification is an approximation of the implementation
relative to α. Its semantics is that the modality is valid, written |= [Tl 
α Tr],
if α(Tl) ⊆ α(Tr). We use lifting functions liftl, liftr that convert elements from
the verification domain, such as programs or formulas, to trace sets. Formally:

Definition 1. Let α : 2Traces → 2Traces be a trace abstraction and Cl, Cr ele-
ments of domains Dl, Dr with associated lifting functions liftl/r : S → Dl/r →
2Traces. Then the trace modality [Cl 
α Cr] is valid in s ∈ S, written s |= [Cl 
α
Cr], iff α(liftl(s)(Cl)) ⊆ α(liftr(s)(Cr)).

For readability, we omit lifting functions in the presentation and assume that
verification domains have fixed lifting functions. We omit α if it is the identity.

Relation to Modal and Dynamic Logic Like in modal and dynamic logic (DL) we
can define a dual modality as follows: 〈Cl 
α Cr〉 := ¬[Cl 
α Cr], where Cr is the
complement of Cr. The semantics of this diamond trace modality can be phrased
as: s |= 〈Cl 
α Cr〉 iff there is a trace in α(liftl(s)(Cl)) that is not in α(liftr(s)(Cr)).
The axioms N (necessitation rule) and K (distribution axiom) of modal logic
follow from Def. 1; axioms of Propositional Dynamic Logic (PDL) [15] also hold
when defining suitable operators on trace sets (like sequencing and star). We re-
fer to our discussion in the appendix (Remark 1) for these observations. Despite
those similarities, the trace modality is strictly more general than DL. Specifi-
cations can originate from different verification domains; also a program can be
a specification (we show several examples for this case later on) or a formula
an implementation. Furthermore, we are not restricted to big-step reasoning.
Because the notation [p]p′ would look strange for lengthy programs p′ and to
emphasize the mentioned differences between the trace modality and standard
DL, we chose the notation also encapsulating the specification inside the box.

In the following, several verification tasks are described and formalized with
the trace modality. We define suitable verification domains D, lifting functions
liftD, as well as abstractions. A summary table is in the appendix.
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3.1 Functional Verification

In functional verification, one shows a given program p ∈ L0 to satisfy a post-
condition Post provided that a precondition Pre holds initially. The problem is
frequently formalized with Hoare triples {Pre}p{Post} [17]. In DL [1,15], one
writes Pre → [p]Post. We distinguish partial correctness, where Post is asserted
to hold if p terminates, from total correctness, where it is also shown that p
terminates. For the latter one can use the dual modality 〈p〉Post.

Functional correctness is over the domain DL0 for programs and DFml for
first-order postconditions. We define lifting functions liftL0(s)(p) := Trs(p) and
liftFml(s)(ϕ) := {τ ∈ Traces : finite(τ) ∧ first(τ) = s ∧ last(τ) |= ϕ} (all finite
traces starting in s whose final state satisfies ϕ). Using the big-step abstraction,
we can formalize (partial) functional correctness as Pre → [p 
αbig Post]. Total
correctness for deterministic programs is expressed as Pre → 〈p 
αbig Post〉.

Example 1. Let p :=j=i*i; while (i<j) { i=i*2; }. It diverges iff the initial
value of i is negative. One can prove postcondition even(i) (with the obvious
meaning) for p if it terminates (partial correctness). Thus, s |= [p 
αbig even(i)]
must hold in all s ∈ S, i.e. αbig(liftL0(s)(p)) ⊆ αbig(liftFml(s)(even(i))). If
s(i) < 0 then the set liftL0(s)(p) contains a single infinite trace. Therefore,
αbig(liftL0(s)(p)) = ∅ and the subset relation holds. If s(i) ≥ 0, p has a single
finite trace whose final state assigns an even value to i (either because s(i) is
0, or because it is greater than 0, and the initial value was multiplied by 2 a
number of times in the loop’s body). Hence, αbig(liftL0(s)(p)) contains a sin-
gle pair (s, sf ) where sf satisfies even(i). It is in αbig(liftFml(s)(even(i))) by
defn. of liftFml. We cannot show s |= 〈p 
αbig even(i)〉 for any s with s(i) < 0,
because then αbig(liftL0(s)(p)) is empty and so cannot contain a trace not in
αbig(liftFml(s)(even(i))). However, |= i ≥ 0→ 〈p 
αbig even(i)〉 is true. ♦

3.2 Information Flow Analysis

To prove that a given program treats secret inputs (for example, a password)
confidentially, i.e. it does not inadvertently leak secret information, one can for-
mally prove that it satisfies an information flow policy. In the simplest case
such policies partition program variables into low-security variables that hold
observable values and high-security ones whose values are secret. A policy im-
poses restrictions on the flow of values from high to low variables. A standard
and very strong policy is non-interference: “Whenever two instances of the same
program are run with equal low values and arbitrary high values, then the re-
sulting low values are equal in the final state”. This ensures that an attacker
cannot learn anything about secret values by running the program with observ-
able values. For simplicity, assume a program p contains exactly one low variable
l and one high variable h, written p(l, h). Using self composition [4,8], this is
formalized as a Hoare triple: If we can prove {l .= l′}p(l, h); p(l′, h′){l .= l′}, p
satisfies non-interference. It can also be directly expressed with the trace modal-
ity: |= [p(l, h) 
α{l}◦αbig p(l, h′)]. Note that the renaming of l to l′ is then not
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necessary since programs are not composed, but evaluated separately. In the ap-
pendix, we discuss how declassification can be encoded with the trace modality.

Example 2. Let p := l=42; if (h>20) {l=17;}. This program does not satisfy
non-interference, because the final value of the observable variable l depends on
the initial value of h. We prove that indeed, |= [p(l, h) 
α{l}◦αbig p(l, h′)] does
not hold, by showing that there is a state s ∈ S for which

(α{l} ◦ αbig)(liftL0(s)(p(l, h))) ⊆ (α{l} ◦ αbig)(liftL0(s)(p(l, h′)))
is not true. Let s be such that s(l) = 0, s(h) = 0 and s(h′) = 30. Then the trace
set of the implementation is {({l 7→ 0}, {l 7→ 42})} which is not contained in
the set for the specification {({l 7→ 0}, {l 7→ 17})}. ♦

3.3 Software Model Checking

Software Model Checking (SMC) [19] describes a wide range of techniques for
analyzing safety or liveness properties of programs. Those techniques have in
common that they focus on automation at cost of expressivity. Frequently, the
goal is not to prove correctness relative to a specification, but rather to quickly
uncover bugs or to generate high-coverage test cases. Recently, there has been a
convergence between model checking and deductive verification techniques [26],
as more mechanisms traditionally known from the latter field, such as abstraction
[29], symbolic execution [23], etc., are integrated to achieve greater expressivity.
On the other side, Bounded Model Checking (BMC) approaches, which limit
state space exploration by a user-defined upper bound on loop unwindings, are
well-known and successful, and finite space checkers such as SPIN [18] continue
being used, e.g. in protocol verification. Properties of interest to SMC (e.g., the
absence of memory faults) can usually be formalized in Temporal Logic (TL).

We introduce the domain DTL for Linear Temporal Logic (LTL) formulas,
liftTL is the standard trace semantics for temporal logic (e.g., liftTL(s)(�p) is the
set of all traces starting in s where p always holds). We exemplarily instantiate
the trace modality to Finite Space MC. Finite space model checkers like SPIN
exhaustively explore the state space of an abstract program model. This implies
that the analysis starts from a concrete input state s and that no unbounded data
structures are involved. We can formalize this problem as s |= [p 
 ϕ], where ϕ is
an LTL formula. In the appendix, we show how to instantiate the trace modality
to Bounded MC, Abstraction-Based MC and Symbolic Execution-Based MC.
Model Checking tools for bug finding can be formalized with the diamond trace
modality: They eagerly try to show |= 〈p 
 ¬ϕ〉, i.e. there is a trace of p
violating ϕ. Such a trace constitutes a counterexample which can be used to fix
the program, and/or to create a useful test case.

So far, we considered concrete programs p ∈ L0. The two subsequently dis-
cussed verification tasks are over schematic programs in L.
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3.4 Program Synthesis

Automated program synthesis starts with a specification of programs at a higher
level than executable code. The latter is created (semi-)automatically from the
specification. In [27], for instance, the user supplies a scaffold consisting of a
functional specification (Pre,Post), domain constraints defining the domains of
expressions and guards, and a schematic program (called “flowgraph template”)
of the form •|∗(T )|T ;T . Here, • is an acyclic fragment, T again a schematic pro-
gram and ∗(T ) a loop with body T . The synthesizer infers synthesis conditions.
These are satisfiable whenever there exists a valid program for the scaffold.

We encode • of the flowgraph template by programs p ∈ L with schematic
statements P, Q, . . . , and define a new verification domain DL with liftL(s)(p) :=
Trs(Concr(p)). Synthesis conditions are included in the intermediate program as
suitable assert(ϕ) statements. When refining an intermediate program p to a
more concrete program p′, the property to show is |= Pre → [p′ 
αbig p]: that
p′ is indeed a refinement of p. In the appendix, we provide an example for the
synthesis of a program computing integer square roots.

3.5 Correct Compilation

A compiler translates a program p in a source language into a program c of a
target language, preserving the behavior of p. The translation can introduce new
program variables. Then, preservation of behavior is typically restricted to a set
of observable variables obs. In modular compilation, a program p is given within
an unspecified context. In this case both p and c are abstract. Correctness of
compilation can be expressed as |= [c 
αobs◦αbig p]. If we want to enforce inclusion
of the traces of c in the traces of p, we can—for deterministic languages—use
the diamond modality instead. In particular for non-deterministic languages, we
can additionally prove the reverse direction |= [p 
αobs◦αbig c].

The formalization makes the similarity to program synthesis explicit. Indeed,
one could create a scaffold by extracting synthesis conditions from p, and then
try to infer c automatically. For example, in [28], a symbolic execution tree of
the source program is “mined” to extract the target program. It is related to
proof mining techniques used in program synthesis.

3.6 Program Evolution & Bug Fixing

Sometimes, the behavior of the “specification” should intentionally be not pre-
served. This situation occurs in program evolution, e.g., after manual or auto-
matic bug fixing [22]: the patched program is supposed to exhibit the bug no
longer, but no new bug is to be introduced. Similarly, in fault propagation anal-
ysis, an injected fault typically will change the behaviour of a program, but not
arbitrarily. This problem is most naturally expressed as |= [pfixed 
αbug◦αbig pbug],
where behavioral differences are conveyed for a suitable abstraction αbug sup-
pressing buggy traces or relating them to corrected ones. We can go a step
further and not just exclude buggy traces, but encode the fix by an abstraction
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αpatch. This is likely to produce a more reliable result asserting that apart from
the fix, the programs behave equivalently, even for the formerly buggy paths. In
the appendix, we discuss two alternative formalizations with an example.

4 Reasoning about the Trace Modality

We propose a reasoning algorithm based on symbolic traces for the trace modal-
ity. The idea is to lift all verification domains to a common language over sym-
bolic traces that over-approximates the set of concrete traces produced by each
lifting function. Abstractions are generalized to symbolic traces. Validity of the
trace modality can then be established by symbolic trace subsumption. The sym-
bolic traces we propose are a regular language. Hence, programs generally have
to be over-approximated, for example, by loop invariant reasoning or bounded
loop unwinding. Not all properties can be encoded in a regular symbolic trace
language, such as complex Computation Tree Logic properties. Even so, the lan-
guage is expressive enough to represent the problems formalized in Sect. 3, and
problems encoded in it can be solved effectively (if the underlying first-order
problems can be solved). We define symbolic stores, states and traces as follows:

Definition 2. Let x ∈ PVar, t ∈ Trm, ϕ ∈ Fml, and P a schematic statement.
The sets SymSto of Symbolic Stores, SymState of Symbolic States, and SymTr
of Symbolic Traces are defined as follows in extended BNF:

SymSto ::= x “ :=” t | stoP | SymSto “ ||” SymSto | “{” SymSto “}” SymSto
SymState ::= ϕ | “(” SymSto “ ,” ϕ “)”

SymTr ::= SymState | SymTr (“ ;” | “+” ) SymTr | ϕ “ !” | SymTr “∗”
Here an abstract store stoP represents an unknown state transition induced by a
schematic L-statement P. The sets SymSto0, SymState0 and SymTr0 are defined
as above, but do not contain abstract stores.

Symbolic stores record changes to program variables. Elementary stores x := t
represent states where the variable x attains the valuation of the (symbolic)
term t. Symbolic stores sto1, sto2 are combined to a parallel store sto1 || sto2. If
both assign a value to the same variable, the later assignment (in sto2) “wins”. A
symbolic store sto1 can be applied to a symbolic store sto2, written {sto1}sto2.
Left-hand sides in sto2 are then evaluated in the states represented by sto1.
Combining two stores into one works by the store concatenation operator “◦”,
defined as sto1 ◦ sto2 = sto1 || {sto1}sto2. We permit the application of symbolic
stores to terms and formulas, with similar semantics. We write −→x := −→t for the
store x1 := t1 || . . . || xn := tn, where xi, ti are the i-th components of −→x , −→t .

Symbolic states consist of an (optional) symbolic store sto and path condition
ϕ representing concrete states satisfying both ϕ and, if present, the assignments
in sto. A symbolic trace is in the simplest case a sequence of symbolic states.
The choice operator + models nondeterministic choice as well as case distinctions
for deterministic programs, depending on the path conditions of the argument
traces. The trace ϕ!, primarily used to model assertions, represents the empty
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tvalK : SymSto0 → (S → S)
tvalK(x := t)(s)(y) := val(K, s; t) if y = x, s(y) otherwise

tvalK(sto1 || sto2)(s) := tvalK(sto2)(tvalK(sto1)(s))

tvalK : SymState0 → 2S

tvalK(ϕ) := {s ∈ S | K, s |= ϕ}
tvalK(sto, ϕ) := {tvalK(sto)(s) | K, s |= ϕ, s ∈ S}

tvalK : SymTr0 → 2Traces

tvalK(τ1; τ2) := {τ0
1 τ

0
2 | τ0

1 ∈ tvalK(τ1) \ {· · · ⊥}, τ0
2 ∈ tvalK(τ2)}

∪ {⊥ | τ0
1⊥ ∈ tvalK(τ1)}

tvalK(τ1 + τ2) := tvalK(τ1) ∪ tvalK(τ2)

tvalK(ϕ!) :=
{
ε if ∀s ∈ S : K, s |= ϕ

⊥ otherwise

tvalK(τ∗) := {τ0
1 τ

0
2 · · · τ0

n : τi ∈ tvalK(τ), n ∈ N} ∪ {ε}

Fig. 1: The Valuation Function tvalK

trace if ϕ holds in the current state and the failure state otherwise. The traces
τ∗ represent all finite concrete traces in which all states satisfy τ . For instance,
true∗ represents the set of all finite concrete traces. We do not include an opera-
tor τω for infinite traces which would significantly complicate validity checking:
One would have to separate terminating from non-terminating traces—which is
undecidable—or consider only non-terminating runs.

A formal semantics for symbolic traces is based on a first-order structure
K with domain D and interpretation I, as well as s ∈ S. The valuation func-
tion val(K, s; ·) assigns to terms a value in D, to formulas “true” or “false.”
We write equivalently K, s |= ϕ or val(K, s;ϕ) = true, as well as K, s 6|= ϕ
or val(K, s;ϕ) = false. The function val(K, s; ·) is defined as usual, except for
the application of symbolic stores and the valuation of program variables. For
x ∈ PVar, we define val(K, s; x) = s(x). If t ∈ Trm and sto ∈ SymSto, we define
val(K, s; {sto}t) := val(K, s′; t), where s′ = val(K, s; sto)(s) (similarly for for-
mulas). We define the trace valuation function tvalK first on concrete symbolic
traces SymTr0. It is parametric in a structure K that fixes the values of unin-
terpreted constant, function, and predicate symbols. The cumulative valuation
function tval is canonically defined as tval(τ) :=

⋃
K tvalK(τ).

Definition 3. We inductively define the valuation function tvalK , overloaded
for symbolic stores, states and traces, as in Fig. 1.

Symbolic traces SymTr0 are created for concrete programs L0. The symbolic
evaluation of schematic programs in L creates abstract stores stoP and path
conditions CP (details below). Intuitively, they represent all possible symbolic
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stores and path conditions that may arise from concrete program execution. We
define their semantics by the union of the semantics of possible instantiations.

Definition 4. Let τ ∈ SymTr be a symbolic trace with occurrences of abstract
stores stoP1 , . . . , stoPn

and path conditions CP1 , . . . , CPn
(with possibly multiple

occurrences of each stoPi
, CPi

). We define tval(τ) as the union
⋃

tval(τ0) of all
τ0 ∈ SymTr0 that are obtained by instantiating all occurrences of stoPi

, CPi
with

concrete stores sto0
Pi
∈ SymSto0 and path conditions C0

Pi
∈ Fml.

Abstractions α are generalized to symbolic traces in the obvious manner,
e.g., the big-step abstraction αbig takes the first and all final states of a trace.
Symbolic representations of the lifting functions require more work. For a lifting
function lift, we denote by slift its symbolic version. Like lift, slift takes a symbolic
state and a verification domain construct and produces a symbolic trace.

Definition 5. A symbolic lifting function slift is correct relative to lift if, for
all s ∈ SymState and σ ∈ tval(s), lift(σ)(C) ⊆ tval(slift(s)(C)).

Symbolic lifting functions for first-order formulas are straightforward to de-
fine: sliftFml(s)(ϕ) := true∗;ϕ. For LTL formulas, sliftTL(s) maps (1) ϕ to “ϕ”,
(2) �ϕ to “ϕ∗”, (3) ♦ϕ to “true∗;ϕ; true∗”, and (4) ϕU ψ to “ϕ∗;ψ; true∗”.

Defining symbolic lifting for programs means encoding symbolic execution.
E.g., one can extract symbolic traces from a symbolic execution tree. Symbolic
traces are more flexible, though, since they can encode non tree-like structures.
The lifting function sliftL0 is defined as follows for assignments, if-else, assume
and assert, and sequential composition (for those, it coincides with sliftkL0

for
BMC). W.l.o.g., we assume symbolic states to be of the form (sto, ϕ).

sliftL0 (sto, ϕ)(x=e) := (sto ◦ (x := e), ϕ)
sliftL0 (sto, ϕ)(if(g) p1 else p2) := (sliftL0 (sto, ϕ ∧ {sto}g))(p1) +

(sliftL0 (sto, ϕ ∧ ¬{sto}g))(p2)
sliftL0 (sto, ϕ)(assume(ψ)) := (sto, ϕ ∧ ψ)

sliftL0 (sto, ϕ)(assert(ψ)) := (ϕ→ {sto}ψ)!

sliftL0 (sto, ϕ)(p1; p2) := {τ1; τ2 : τ1 ∈ sliftL0 (sto, ϕ)(p1),
τ2 ∈ sliftL0 (last(τ1))(p2)}

Symbolic lifting is more complex for loops, as usual in symbolic execution.
Possible approaches are loop unwinding which generally does not terminate for
loops with symbolic guards, bounded unwinding with a fixed upper bound on the
number of unwinding steps, and loop invariants. In the appendix, we provide a
more detailed discussion and define symbolic lifting for those cases.

To define sliftL, we have to encode schematic statements P. We choose to
do this with abstract stores stoP that model state changes caused by schematic
statements. We also admit abstract formulas CP to model (unknown) path con-
dition constraints arising from an abstract program P. We define:

sliftL(sto, ϕ)(P) := true∗; (sto ◦ stoP, ϕ ∧ {sto ◦ stoP}CP) for all P.
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The Algorithm for Checking Validity of Trace Modalities. When presented with
a problem [Cl 
α Cr] and a symbolic state s0, the algorithm evaluates in three
phases whether α(liftl(σ0)(Cl)) ⊆ α(liftr(σ0)(Cr)) holds for all σ0 ∈ tval(s0):
(1) Convert Cl/r to symbolic traces τsl/r using symbolic lifting functions sliftl/r

(as described above for first-order and LTL formulas, as well as L-programs).
(2) Construct Symbolic Finite Automata (SFAs) SFAl/r accepting the languages

tval(τsl/r), i.e. concrete traces represented by symbolic ones.
(3) Check whether the language accepted by SFAl is included in the language

accepted by SFAr through construction of a simulation relation.
Transitions in an SFA are labeled with symbolic states that may represent

infinitely many concrete states. For example, a transition labeled with “true”
models a transition for any concrete state. Formally, we define SFA as:

Definition 6. A Symbolic Finite Automaton is a tuple A = (Q,Σ, δ, q0, F ) of
a finite set of states Q, an alphabet Σ ⊆ S, a finite transition relation δ ⊆
Q× SymState×Q, an initial state q0 ∈ Q and a set of accepting states F ⊆ Q.
Automaton A accepts a concrete trace σ1σ2 · · ·σn if there is a path q1

s1−→ q2
s2−→

· · · qn
sn−→ qn+1 in A such that qn+1 ∈ F and for each i = 1, . . . , n it holds that

σi ∈ tval(si). The language L(A) of an SFA A is the set of all accepted traces.

The construction of an SFA from symbolic traces (step (2)) is shown in Algo. 2
in the appendix. Lem. 1 states the soundness of the algorithm.

Lemma 1. Function createSFA in Algo. 2 is correct: L(createSFA(τ)) =
tval(τ) holds for all τ ∈ SymTr.

Simulation relations on automata for checking language inclusion [24] and
the complexity of crating them [10] have been studied before. Our notion is
non-standard, though, since we use symbolic automata with first-order transi-
tions. It is not sufficient to relate edges with identical labels or to use existing
propositional symbolic approaches. Instead, we try to prove that an edge in the
specification automaton subsumes an edge in the implementation automaton.
We define symbolic state subsumption as follows.

Definition 7. Let si = (stoi, ϕi), i = 1, 2 be symbolic states. Let −→xi be the left-
hand sides of stoi, subst be a substitution of abstract symbols in s2 not occur-
ring in s1 with concrete symbols; i.e. uninterpreted constants, function symbols,
abstract stores, abstract path conditions are replaced with terms, stores, and for-
mulas. Let P be a fresh predicate with arity |−→x2|. Then s2 subsumes s1 iff

(SUB1) all variables in −→x2 are also contained in −→x1 and
(SUB2) there is a substitution subst such that:

|= ϕ1 ∧ {sto1}P (−→x2)→ subst
(
{sto1}ϕ2 ∧ {sto2}P (−→x2)

)
.

For states without stores omit the {stoi}. In the following, we write s1 v s2 if s2
subsumes s1, and s1 vsubst s2 to make the substitution subst for (SUB2) explicit.
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Example 3. Let s1 = (x := 17 || y := 42 || z := 2, true). It is subsumed by s2 =
(x := c, c ≥ 0), since (SUB2) holds for subst := (c 7→ 17):

|= {x := 17}P (x)→ (c 7→ 17)({x := 17}c ≥ 0 ∧ {x := c}P (x))
follows from |= {x := 17}P (x)→ ({x := 17}17 ≥ 0 ∧ {x := 17}P (x))
follows from |= P (17)→ (17 ≥ 0 ∧ P (17))

which is true (w.l.o.g. we omit parts of the store of s1 that do not occur in the
target formula). Two more small examples are in Example 8 (appendix). ♦

Lemma 2. For s1, s2 ∈ SymState, s1 v s2 implies tval(s1) ⊆ tval(s2).

Subsumption can also be used to establish whether, for a concrete state σ
and symbolic state s, it holds that σ ∈ tval(s) which is needed for the acceptance
criterion of SFAs (Def. 6): for the symbolic state s′ = (−→xs := σ(−→xs), true), where
−→xs are the left-hand sides of the store of s, it is sufficient to prove s′ v s.

Now we can define the notion of a Subsumption Simulation Relation (SSR),
a simulation relation on SFAs based on subsumption.

Definition 8. A Subsumption Simulation Relation between SFAs Ai = (Qi, Σ,
δi, q

i
0, Fi), i = 1, 2, is any relation R ⊆ Q1 ×Q2 satisfying

(SR1) ∀q1 ∈ Q1, q2 ∈ Q2, s, q
′
1 ∈ Q1,(

(R(q1, q2) ∧ (q1, s, q
′
1) ∈ δ1) =⇒

∃q′2 ∈ Q2, s
′, (R(q′1, q′2) ∧ (q2, s

′, q′2) ∈ δ2 ∧ s v s′ )
)

(SR2) (q1
0 , q

2
0) ∈ R

Def. 8 equals the “safety simulation relation” of [10], except for the high-
lighted conjunct s v s′ in (SR1). Constructing an SSR additionally requires
to find a suitable substitution and to call a prover showing subsumption. Since
SSRs are closed under union and (SR2) is monotone, one can compute R by
repeatedly deleting pairs from Q1 × Q2 that locally do not satisfy (SR1), and
then check whether the result satisfies (SR2) [10]. For each local check, we might
have to substitute abstract symbols in the specification automaton. The subse-
quent lemma, also stated in [10] for their similar notion, establishes a sufficient
condition between simulation relations and language inclusion.

Lemma 3. If there is an SSR between SFAs A1 and A2, then L(A1) ⊆ L(A2).

Our top-level algorithm evaluate is shown in Algo. 1. In the final step it
tries to find an SSR. Only if this was successful, it returns YES. Function find-
SSR (Algo. 1) starts with an “initial simulation” produced by function initSim
(Algo. 3, appendix) instead of the cross product to save expensive subsumption
checks. During the filtering to derive an SSR, it maintains a set of substitutions
substs, since there might be multiple options. Function subsumption(s, s′, substs)
(Algo. 4, appendix) tries to find compatible extensions subst′ of the substitutions
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Algorithm 1 Evaluation of a Trace Modality Formula using SSRs
function evaluate(s0, [Cl 
α Cr])

τl ← α(sliftl(s0)(Cl)), τr ← α(sliftr(s0)(Cr)) . Step (1)
Al ← createSFA(τl), Ar ← createSFA(τr) . Step (2)
if (ql0, qr0) ∈ findSSR(Al, Ar) then return YES . Step (3)
else return UNKNOWN end if

end function

function findSSR((Ql, Σ, δl, ql0, Fl), (Qr, Σ, δr, qr0 , Fr))
R←initSim(Ql, Qr, δl, δr), substs ← {λx.x}, changed ← true
while changed = true do

changed ← false
for all (ql, qr) ∈ R, (ql, s, q′l) ∈ δl do

if ∃(qr, s′, q′r) ∈ δr s.t. subsumption(s, s′, substs) 6= ∅) then
substs ← subsumption(s, s′, substs) . (for all such s′)
else R← R \ (ql, qr), changed ← true end if

end for
end while
return R

end function

in substs by first applying an existing substitution and then finding another one
for yet uninstantiated abstract symbols. If there is no such substitution, e.g.,
since one would have to instantiate the same abstract symbol with different val-
ues, the original substitution is dropped. We do not further specify the process
of finding substitutions; a naive approach could try to instantiate abstract sym-
bols with all combinations of terms occurring as right-hand sides in the store of
s. An example application of Algo. 1 is shown in the appendix. Lem. 4 below
states correctness of the findSSR. The subsequent main theorem follows from
Lems. 1 to 4 and the usage of correct symbolic lifting functions (Def. 5).

Lemma 4. Function findSSR (Algo. 1) is correct: For SFAs A1, A2, it holds
that any SSR R found by findSSR(A1, A2) satisfies (SR1).

Theorem 1. Function evaluate (Algo. 1) is correct: For all s0 ∈ SymState,
evaluate(s0, [C1 
α C2]) = YES only if, for all σ ∈ tval(s0), σ |= [C1 
α C2].

5 Related Work

We compare our work to(1) logics based on traces and (2) approaches unifying
program verification techniques. De Giacomo & Vardi [9] propose a Regular Tem-
poral Specification language REf that is syntactically similar to our symbolic
traces, but ranges over propositional formulas while our atoms are first-order
symbolic states. They show that REf has the same expressiveness as Monadic
Second-order Logic (MSO) and is strictly more expressive than LTL on finite
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traces. They define Linear-time Dynamic Logic LDLf , having the same expres-
sivity as REf , but allowing logical connectives like negation. Reasoning in LDLf
is also translated to automata. They mention, but do not detail, the possibility
to “capture finite executions of programs [. . . ] (in a propositional variant [. . . ])”,
which is exactly what we do—but not restricted to a propositional variant. In
addition, we incorporate abstract programs to reason about classes of programs.
It would be interesting to investigate whether we could use a variant of LDLf
to embed symbolic traces conveniently into logic formulas.

Beckert & Bruns [5] combine dynamic logic and first-order temporal logic to
a Dynamic Trace Logic. They have a trace-based semantics for a while language
and provide a sequent calculus to reason about temporal properties (not pre-
ceded by symbolic lifting). The calculus rules depend on the top-level operator
of the first-order LTL post condition. This leads quite complex loop invariant
rules. Also, the approach is not directly applicable to other verification domains,
e.g., relational verification. Our approach is more flexible, because there is no
syntactic constraint between the left and right-hand side of the trace modality.

Din et al. [11] propose a trace semantics for the actor-based concurrent lan-
guage ABS. Traces are “locally abstract, globally concrete”: at the local (e.g.,
method) level, symbolic traces are used. These are primarily a semantic notion,
facilitating a modular semantics for a concurrent language, while our symbolic
traces are syntactic entities. The authors briefly sketch a program logic with
trace formulas, but leave the notion of trace formulas abstract.

Regarding area (2), Kamburjan [20] proposes the behavioral modality aiming
to integrate existing analyses and sharing some aspects with the trace modality.
It asserts that a statement in a concurrent language meets a behavioral specifi-
cation consisting of a type and a translation of the type into an MSO formula.
This is the case if that formula holds for all traces generated by the statement.
Important differences to our approach include: (a) The behavioral modality syn-
tactically integrates analyses on the same program class, while the trace modality
is mainly a general semantic framework, (b) the “translation” of [20] projects to
MSO and is thus less expressive than lifting to arbitrary trace sets. The trace
modality can also be used to combine verification techniques. Two specifications
can semantically be combined by forming the intersection of the trace sets. For
reasoning about combinations, we could use product constructions on SFAs.

Some systems do not provide a common semantics for verification domains,
but a framework to implement different analyses. They usually represent ver-
ification problems in an Intermediate Language (IL) and interface to different
provers. Boogie [2] and Why3 [6] both are an IL and tool for deductive program
verification. They are used as backends by verifiers for languages like C and Java.
Our “IL” is the regular symbolic trace language, which, compared to Boogie and
WhyML, is less usable for direct programming, more abstract and less expressive
(e.g., we cannot directly write loops, but have to use invariants). Yet, the syn-
tactic notion of symbolic traces is closely related to the semantic notion of the
trace modality, allowing formalizing and proving a problem in a closely related
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framework. Moreover, the trace modality can easily express other problems than
“standard” post condition verification. Our algorithm also interfaces to different
provers: Which one to use in the subsumption step is left open.

6 Conclusion and Outlook

We presented the trace modality, a novel formalism for expressing many practical
problems of sequential program verification. It relates two elements of the same
or different domains, e.g., programs, first-order assertions, or temporal logic for-
mulas. Programs can be abstract and represent classes of concrete programs. We
demonstrate the usefulness of the trace modality by providing formalizations of
various verification problems: Functional Verification, Information Flow Analy-
sis, Model Checking, Program Synthesis, Compilation, and Program Evolution.
Our uniform reasoning system translates programs and formulas to regular sym-
bolic traces and then reduces the problem to the construction of simulation
relations between finite automata with symbolic transitions. Similar to the se-
mantics of the trace modality, this approach is parametric in the translation to
symbolic traces and the abstraction operator. Although regular symbolic traces
have already been proposed before as both a specification mechanism and se-
mantic representation, our work is the first we know of connecting both aspects.
This facilitates flexible reasoning about programs and specifications in different
combinations: A program can even serve as the specification of a formula.

We hope that our uniform formalization helps to uncover synergy potential
between so far separate areas in the field of program verification. Moreover, the
practical potential of a system based on symbolic traces supporting different
verification techniques, for example, program synthesis and deductive verifica-
tion, is huge. For instance, after a failed proof attempt of a postcondition, one
could try synthesis techniques for stepwise refinement of the postcondition to an
abstract program. MC and deductive verification techniques could work hand
in hand to treat loops, by unwinding, k-induction, abstract interpretation-based
techniques, etc. Finally, the idea of “patch abstraction” for program evolution
could help in proof reuse, by applying the patches also to existing proofs.

Apart from investigating these ideas, we plan to implement our reasoning al-
gorithm for symbolic traces and to examine different existing trace languages, like
linear-time dynamic logic, which might lead to more intuitive or more expressive
representations. Also, we project to extend our framework to non-deterministic,
in particular, to concurrent programming languages.
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