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Abstract Legacy systems are business-critical software systems whose failure can
have a significant impact on the business. Yet, their maintenance and adaption
to changed requirements consume a considerable amount of the total software
development costs. Frequently, domain experts and developers involved in the
original development are not available anymore, making it difficult to adapt a
legacy system without introducing bugs or unwanted behavior. This results in
a dilemma: businesses are reluctant to change a working system, while at the
same time struggling with its high maintenance costs. We propose the concept of
Structured Software Reengineering replacing the ad hoc forward engineering part of
a reengineering process with the application of behavior-preserving, proven-correct
transformations improving nonfunctional program properties. Such transformations
preserve valuable business logic while improving properties such as maintainability,
performance, or portability to new platforms. Manually encoding and proving such
transformations for industrial programming languages, for example, in interactive
proof assistants, is a major challenge requiring deep expert knowledge. Existing
frameworks for automatically proving transformation rules have limited expres-
siveness and are restricted to particular target applications such as compilation
or peep-hole optimizations. We present Abstract Execution, a specification and
verification framework for statement-based program transformation rules on JAVA
programs building on symbolic execution. Abstract Execution supports universal
quantification over statements or expressions and addresses properties about the
(big-step) behavior of programs. Since this class of properties is useful for a plethora
of applications, Abstract Execution bridges the gap between expressiveness and
automation. In many cases, fully automatic proofs are in possible. We explain
REFINITY, a workbench for modeling and proving statement-level JAVA transfor-
mation rules, and discuss our applications of Abstract Execution to code refactoring,
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cost analysis of program transformations, and transformations reshaping programs
for the application of parallel design patterns.

1 Introduction

“When Companies Become Prisoners of Legacy Systems”: this title of a Wall
Street Journal article [41] well describes the predominant perception of legacy
software systems in academia. Indeed, legacy systems are often associated with
high maintenance costs [12, 13, 40], ranging between 67% and 90% of the total
software costs [13]. In a more recent case study [12], an amount of 75%was reported
for a financial services company. Interestingly, this perception is not always shared
in industry. In an interview with 26 industry practitioners [26], they describe their
legacy systems as businesses-critical, reliable, and proven systems. The same survey
names the loss of expert knowledge about the software, high maintenance costs, and
the desire to increase flexibility as main drivers formodernization of legacy systems.

Practitioners are facing a dilemma: they are reluctant to “change a running
system” encoding valuable domain knowledge and representing high business value,
while struggling with the costs to keep it running. The stakes are high, and the
risks to introduce bugs or unwanted behavior during legacy system modernization
are considerable [19]. A major challenge is that the original source code has
been evolving substantially, documentation might be missing, and domain experts
as well as developers involved in past developments might not be available any
more [19, 52]. Therefore, even minor modifications present high risk [52].

Software Reengineering is the “examination and alteration of a subject system
to reconstitute it in a new form” [11]. The goal is to preserve domain knowledge
encoded in existing software, while improving desirable nonfunctional properties
like maintainability, performance, and flexibility. In the case of business-critical
legacy systems, reengineering efforts must be especially careful to maintain the
essential semantics of the subject system, for example, through the introduction
of automated tests [16]. While automated testing should be part of any serious
software development, it bears two problems: first, writing meaningful, fine-
granular tests for legacy systems is nontrivial in presence of missing documentation
and domain experts. Second, post hoc verification only informs about a failure after
its introduction.

Regression Verification [20] allows automatically verifying the equivalence
of closely related versions of the same program. If the changes applied during
reengineering are small enough, regressions can in principle be excluded using this
methodology. However, this requires analyzing whole methods after each change,
and side effects or irregular completion (e.g., exceptions) are not considered.

We propose structured software reengineering as an alternative. Following
Chikofsky and Cross [11], reengineering (1) starts with a reverse engineering
phase to achieve a more abstract description of the system, followed by (2) a
forward engineering or restructuring phase. Structured reengineering does not
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impose requirements on phase (1), which aims to carve out reengineering goals and
concrete suggestions for code modifications. Instead of then proceeding with the
usual procedure interleavingmanual changes and post hoc verification (using testing
or more heavyweight techniques), structured reengineering consists of applying
sequences of proven-correct program transformation rules to the legacy system.
Such rules consist of a schematic description of code fragments on which they
are applicable and of a set of preconditions. Each rule has been certified in
advance to guarantee that for all applicable input programs, an application of the
rule results in a semantically equivalent program. Such proofs only have to be
conducted once per rule; whenever applying it to a concrete program matching the
schematic description, one merely has to show that the preconditions are satisfied.
Additionally, a rule can be equipped with nonfunctional guarantees, for instance, on
the execution time of the transformed result or with an informal description of its
intention.

This approach has the following advantages:

1. It guarantees the preservation of the business logic contained in the original
legacy system, even in the absence of domain experts and documentation.

2. The preconditions which have to be checked prior to the execution of the
transformation are local to the transformed piece of code. This is especially
beneficial during applications in huge (method/class/module) contexts.

3. If the applied rules guarantee additional (nonfunctional) properties on top of
semantic preservation, such properties of the resulting system are obtained on
the fly. This also helps to assure that the transformation process proceeds toward
the reengineering goals, and to select rules accordingly.

To be practical, structured reengineering requires catalogs of transformation
rules as well as tool support, such as the integration into an IDE. While this seems
to be an obstacle, it turns out that documentation and tool support already exist for
a popular class of code transformations, namely refactoring rules. Refactoring aims
to improve the internal structure of code while maintaining its semantics [18]; the
goal is to make the code better to read and maintain by humans. Fowler published
a well-organized catalog of refactoring techniques [17, 18]. Many of them, such
as Extract Method and Slide Statements, are implemented in major IDEs (e.g.,
Eclipse or IntelliJ IDEA). The intention of each refactoring technique is thoroughly
documented and motivated along examples. However, the set of preconditions
necessary for semantic preservation is almost always incomplete, and naively using
refactorings offered by an IDE can easily break the input program [14, 44]. We
discuss this in Sect. 4.

To illustrate the application of structured reengineering, we consider an example
from [18] computing the total salary and average age of the employees of a company.
The corresponding code is depicted in Fig. 1, Listing 1. Observe that the loop in
Lines 4–7 performs two different tasks: it (1) computes the average age, operating
on the variable avgAge and reading the age field of the elements in the people
array, and (2) computes the total salary, operating on the variable totalSalary
and reading the salary field of the elements in the people array. The Split Loop
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Fig. 1 Computing average age and total salary for a list of employees

refactoring technique [18] suggests to split a loop doing two different things into
two loops (see Fig. 1, Listing 2). If code readability is a chosen reengineering goal,
it makes sense to apply this technique. Additionally, this makes it easier to apply
further optimizations, such as converting the loops to map-reduce transformations
using (parallel) streams.

Program transformations can be expressed as input-output pairs of programs
containing placeholders representing arbitrary expressions or statements. After
instantiating the placeholders s.t. the input program matches the program fragment
to transform, the original fragment is replaced by the output program with the same
instantiations. Thus, the Split Loop transformation can be expressed as

for (itExpr) { PQ } ù for (itExpr) { P } for (itExpr) { Q }

However, this simple rule comes with strings attached. The most common obsta-
cle is that locations written and accessed by statements P and Q are overlapping;
in this case, the loop must not be split. Apart from preconditions on written and
accessed locations, abrupt completion has to be regarded: P andQ might complete
abruptly because of a (labeled) break and continue, a return, or because of a
thrown exception. The latter also applies for itExpr. In Sect. 4, we present certified
preconditions for refactoring techniques which we derived using a refinement loop
based on feedback from failed proof attempts. For our example, Listing 2 shows the
result of the application of Split Loop on Listing 1. In addition, we also moved the
division in Line 8 from Listing 1 to before the second loop using a Slide Statements
refactoring. This keeps together the code concerned with the computation of the
average age, which one could now extract into a new method using an Extract
Method refactoring. Those techniques are also discussed in Sect. 4.

A critical part in the development of transformation rule catalogs is the effort
that needs to be invested to prove the desired properties of the rules. Formalizing
and proving the rules in interactive proof assistants like Isabelle [37] or Coq [8]
requires substantial effort for manually writing proof scripts, as can be observed
in the work on verified compilers [29, 31, 51]. Previously proposed approaches for
proving program transformations automatically (e.g., [9, 20, 33, 49]) are tailored
to a particular target application (e.g., symbolic execution rules or peephole
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optimizations) and have a limited expressiveness (e.g., only abstract statements or
expressions, no loops, no specification of written and accessed locations).

We developed Abstract Execution (AE) [47, 50], a specification and verification
framework based on Symbolic Execution (SE). AE trades off the flexibility of
interactive proof assistants with the automation offered by specialized techniques: it
restricts the properties of transformations that can be proved to universal, behavioral
properties on statement level (no existential quantifiers, no reasoning about internal
structure of placeholders, no transformations on class level), and offers an expressive
specification language for describing represented concrete programs. The result is a
system in which many meaningful transformations (such as all refactoring rules in
Sect. 4) can be proven fully automatically.

We implemented AE for the JAVA language as an extension of the KeY program
prover [2]. As KeY allows manual inspection of generated proof trees, we can draw
feedback from failed proof attempts that lets us further refine our transformation
models in an iterative manner. To further increase the usability of our approach, we
developed REFINITY [48] (available at http://www.key-project.org/REFINITY),
presented in Sect. 3. REFINITY offers editor support dedicated to developing
transformation rules in AE and greatly simplifies the interaction with the KeY
system.

To kick-start the creation of a catalog of transformation rules suitable for
structured reengineering, we formalized and proved three types of transforma-
tion rules:

1. We prove nine statement-level refactoring rules from Fowler’s textbooks [17,
18], including two with loops (Sect. 4). In all cases, full semantic equivalence of
programs before and after the transformation is proved.

2. Three rules for restructuring sequential code for subsequent parallelization [22]
are discussed in Sect. 5. This comprises two complex loop transformations, for
which we still achieve more than 99.7% proof automation. We prove semantic
equivalence and further properties needed for parallel execution of the code.

3. In Sect. 6, we derive results about the cost impact of seven loop transformation
rules, interacting with an external cost analysis tool. The resulting Quantitative
AE framework [4] is the first approach to—fully automatically—analyze and
certify the cost of schematic programs, and the first to reason about the cost
impact of transformation rules.

Structure of This Chapter
We explain our Abstract Execution framework in Sect. 2. The REFINITY work-
bench for modeling and proving JAVA code transformation rules is presented in
Sect. 3. Our applications on refactoring rules, restructuring for parallelization, and
cost analysis of transformations are presented in Sects. 4–6. We conclude and
mention promising future work in Sect. 7.

The contents of this chapter are derived from two main chapters of the PhD
thesis of the author [47, Chapters 4 and 6], the original publication on Abstract
Execution [50], and from three follow-up publications [4, 22, 48].

http://www.key-project.org/REFINITY
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2 Abstract Execution

Abstract programs contain schematic placeholders representing many concrete
statements or expressions. They naturally occur in many areas of computer science.
Program synthesis [42, 46], for example, can be phrased as “show that there exists
an instantiation of a scaffold satisfying my desired property.” The scaffold is an
abstract program, and the instantiation the result of the synthesis process. Consider,
for example, the abstract program

int f(int[] a) { P return a[0]; }

containing an abstract statement P . To synthesize a version of method f returning
the smallest element of array a (assuming that a is non-empty), we can instantiate
P with “Arrays.sort(a);”, and thus prove that there is a concrete program
matching the scaffold and satisfying the desired specification.

Universal properties quantifying over programs are traditionally proven by
structural induction [10]. Early work relied on pen-and-paper proofs [32, 36].
Recently, interactive theorem provers are used to mechanize correctness proofs,
for example, in the CompCert verified compiler [31] or in the verification of the
seL4 microkernel [28]. To prove, for example, that after executing “int x=1; P ”
the value of x is 1, one should differentiate the cases of P being an assignment,
conditional statement, loop, etc. In the case of industrial programming languages
like JAVA, this approach quickly gets out of hand. The core idea of Abstract
Execution [47, 50] is that it does not matter what kind of statement P is instantiated
with, as long as it does not write to variable x and completes normally (e.g., does not
throw an exception). In other words, we are concerned with the observable behavior
of the possible instantiations.

We implemented this kind of reasoning as an extension of Symbolic Execution [6,
10, 27]. The principle of SE is to explore all paths in a program by replacing
concrete inputs by symbols. Whenever the execution depends on the concrete value
of an input (as for an if statement with symbolic guard), SE performs a case
distinction and follows each path separately. During the execution, assignments are
tracked in a symbolic store, while case distinctions update the path condition. A
symbolic state is a pair (PC, Store) consisting of a path conditionPC and a symbolic
store Store. For example, executing an if statement with condition “a>=0” creates
two successor states, one where a ≥ 0 is added to the path condition, and one
where a < 0 is added. A symbolic store is, in the simplest case, a sequence of
assignments such as (a := b,b := −b). This represents all (infinitely many) states
where a attains the initial value of b, and b attains its negated initial value. In a state
(PC, Store), all right-hand sides in Store are constrained by the conditions in PC:
the state ({b < 0}, (a := b,b := −b)) represents all concrete states where a attains
the initial, negative value of b, and b the positive inverted value. For example, the
concrete states a �→ −1,b �→ 1 and a �→ −17,b �→ 17 are elements of this set of
concretizations. We refer to [47, Chapter 3] for a discussion of SE and its semantics.

But how can we symbolically execute an abstract statement or expression?
Our solution (1) reflects the abstractness on the level of symbolic stores and path
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conditions, and (2) performs a case distinction for all completion modes (normal
completion, abrupt completion due to a thrown exception, break, etc.) in separate
SE branches.

The central concept are abstract (store) updates. If an abstract statement P
depends on a set of locations footprintP and may write to a set of locations frameP,1

executing P in a state (PC, Store) leads, for the case of normal completion, to a
state

(PC, Store ◦ UP (frameP :≈ \value(footprintP)))

where UP (frameP :≈ \value(footprintP)) is the abstract update and ◦ a
concatenation operator for symbolic stores. The semantics of the abstract update
is a collection of nonabstract updates with left-hand sides in frameP, and all right-
hand sides depend at most on the values of locations in footprintP. Thus, an abstract
store containing abstract updates represents up to infinitely many nonabstract stores,
each representing up to infinitely many concrete assignments. The concatenation
is resolved by interpreting the locations in footprintP in the context of Store;
assignments by the abstract update of locations in frameP overwrite already existing
ones in Store.

Abstract Execution provides a versatile specification framework allowing to
precisely and, at the same time, abstractly specify assigned and read locations, and
conditions for abrupt completion. Moreover, one can define functional assertions on
the resulting symbolic state. Subsequently, we expound our specification language
in Sect. 2.1. In Sect. 2.2, we show how to symbolically execute abstract programs.

2.1 Specifying Abstract Programs

AE extends the JAVA language with two keywords: “\abstract_statement
P ;” and “\abstract_expression Type e;” for declaring an abstract state-
ment with identifier P and an abstract expression of type Type with identifier e,
respectively. We use the term Abstract Program Element (APE) to refer to both
abstract statements and expressions. If two APEs with the same identifier appear in
a program (or a context of two programs), they are assumed to have the same seman-
tics. This is especially useful for expressing transformations: two APEs on the left-
and right-hand sides of a transformation rule represent the same concrete programs.

To specify frame, footprint, and abrupt completion behavior of APEs, we use
JAVA Modeling Language (JML) [2, 30] specification comments starting with “@”.
For example, the abstract statement

//@ assignable x, y;

//@ accessible \nothing;

\abstract_statement P ;

1 We adopt the convention to call locations changed by a program its frame and locations that may
be read by a program its footprint (see, e.g., [2, 25]).
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Table 1 Problematic cases for Slide Statements

Statement 1 Statement 2 Counterexample

Inputs Result before Result after

(1) x++; y = 2*z;

(2) x++; y = 2*x; x = 1, y = 1 x = 2, y = 4 x = 2, y = 2

(3) x++; x = y; x = 1, y = 1 x = 1 , y = 1 x = 2 , y = 1

(4) x = 20 / y; y = 5; x = 1, y = 0 x = 1 , y = 0 , Exc. x = 4 , y = 5

(5) x = 20 / 0; y = 5; x = 1, y = 0 x = 1, y = 0 , Exc. x = 1, y = 5 , Exc.

represents all concrete statements assigning at most variables x and y, while having
no access to the state at all. Thus, “x=17;” is an instance of P , while “x=y;”
is not (it reads y). There also exists the option to enforce some assignment of a
location: “assignable x, \hasTo(y);” specifies that y has to be assigned.
Then “x=17;” would no longer be an instance of P (but, e.g., “x=17; y=17;”
is).

When modeling transformation rules, concrete frames and footprints (such as x
and y) are usually insufficient: a transformation should be applicable regardless of
the names (and numbers) of variables and fields available in a particular context.
We leverage the theory of dynamic frames [25] to that end. A dynamic frame is a
set-valued specification variable representing an unknown set of concrete locations.
Instead of enumerating variables in a frame as we did above, a placeholder symbol
is used, for example, frameP or footprintP. If needed, the meaning of these symbols
can be refined in specifications using usual set operations. For example, one can
specify x ∈ frameP, or frameP ⊆ frameQ. These operations have corresponding
representatives in JML; for simplicity, we continue using the mathematical notation.

We explain how to express constraints about frames and footprints along a refac-
toring technique from Sect. 4: Slide Statements, which we already mentioned in the
introduction. The purpose of this refactoring is to bring statements closer together
which participate in a common task, contributing to better understandability and
preparing for subsequent refactorings like Extract Method.

To motivate the constraints which we are going to define, we present some
example cases with counterexamples in Table 1. The two statements in Line 1 of
the table can be swapped without problems: Their behavior is fully independent. In
Line 2, the frame of the first statement intersects with the footprint of the second
statement. Thus, applying Slide Statements leads to different results for variable y
before and after the application: frames and footprints of both statements must be
disjoint. This is not enough: a later occurring statement can overwrite changes of
an earlier one. An example for this is shown in Line 3, where the overall result
equals the result of the statement occurring last: the frames of both statements must
be disjoint.

Figure 2 depicts an abstract program model for the Slide Statements refactoring
including the two constraints on frames and footprints. The abstract statements
A and B from the input model (Listing 3) occur in reverse order in the output
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Fig. 2 Abstract program model for Slide Statements ignoring abrupt completion

model (Listing 4). Both abstract statements are annotated with dynamic frame sym-
bols frameA/footprintA and frameB/footprintB, respectively, for their frames and
footprints. Our constraints on them are implemented using an ae_constraint
declaration in Lines 1–4: the constraints in Lines 2 and 3 enforce disjointness of
frames and footprints, while the constraint in Line 4 enforces disjointness of the
frames. Assuming normal completion, AE can prove these constraints sufficient.

In the JAVA language, we however have to take abrupt completion (here,
exceptions and returns) into account. Line 4 in Table 1 shows an example
where the order of the statements determines not only the result values of the
considered variables but also the resulting completion mode (exception vs. normal
completion) for the shown test case. These statements would, though, anyway not be
amenable for Slide Statements since the requirement on the disjointness of frames
and footprints is not met. In the scenario shown in Line 5, frames and footprints
are disjoint; the outcome is still different before and after transformation, since
early exceptional termination of the first statements impedes the assignment of 5
to y before, but not after the swap. This leads us to the additional requirement
for semantic preservation in the presence of abrupt completion: if one statement
completes abruptly, the assignments by the other statement must not be “relevant.”
If we are not concerned about the final value of variable y, we may reorder these
statements. Furthermore, abrupt completion must be mutually exclusive, because
otherwise (1) the assignments by both statements would have to be irrelevant, and
(2) there could be different reasons for abrupt completion (return vs. thrown
exception, different thrown exception types/objects).

Figure 3 shows the extension of the Slide Statements transformation model
considering exceptions. For space reasons, we ignore returns here; the full
model is available in [47, Appendix E]. If no conditions on abrupt completion
behavior of APEs is provided, as in Fig. 2, AE automatically explores all paths
corresponding to each possible completion mode. In Fig. 3, we bind exceptional
behavior, using the “exceptional_behavior requires . . .;” keyword, to
uninterpreted predicates throwsExcA/throwsExcB (Lines 15–16 and 21–22). The
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Fig. 3 Model for Slide Statements with exceptions, extensions highlighted in gray

intended meaning is “the abstract statement A/B throws an exception if, and only
if, the predicate throwsExcA/throwsExcB holds.” Since whether or not a statement
throws an exception is usually determined by its footprint (e.g., “x/y” throws
an arithmetic exception iff y is zero), we define these predicates parametric in
the values of the footprints: the dynamic frame footprintA represents a set of
locations, while the expression \value(footprintA) represents the values of this
set. Analogously to our usage of dynamic frame specification variables, we can now
use these predicates in constraints (Lines 5–11 in Fig. 3). In Lines 5–7, we stipulate
that either statement A or statement B may throw an exception (but not both) using
the “\mutex” keyword. Assuming an abstract location set relevant representing
relevant locations, we subsequently impose that if one statement completes abruptly
due to a thrown exception, the frame of the other statement only contains irrelevant
locations (Lines 8–11).

Our implementation of AE automatically proves semantic equivalence of the full
model (including the specifications for returns, which work similarly to the ones
for exception) in less than 20 s—once and for all, for all input programs satisfying
the specified constraints. Given such a proof, we can be sure that our specified
constraints are sufficient for a safe application of the refactoring rule.

In addition to “exceptional_behavior”, the keywords “return_
behavior” for abrupt completion due to a return and, for loop bod-
ies, “break_behavior” for breaks and “continue_behavior” for
continues are supported. For labeled breaks, one writes
“break_behavior (lbl)” (similarly for labeled continues). Moreover,
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“requires” can be replaced by “ensures” to specify a postcondition on the
resulting state. While this is rarely needed for transformation rules, it can be useful,
for example, in incremental, “correct-by-construction” program development.2

The specification framework we have just presented is designed with real
applications and automatic proofs in mind. In Sects. 4–6, we demonstrate that it
is strong enough to model interesting transformations from different areas of code
optimization. Next, we introduce our Symbolic Execution rules for AE.

2.2 Symbolic Execution of Abstract Program Elements

Symbolic execution of an APE results in separate execution branches for each
possible abrupt completion mode. Figure 4a visualizes the relevant part of the exe-
cution tree for an abstract statement (we omitted labeledbreaks and continues).
Assuming that we start in a symbolic state (PC, Store), we produce symbolic output
states snormal for normal completion, sexc for abrupt completion due to a thrown
exception, and so on. In the figure, symbolic states are input states for the execution
of the annotated statement. The variables res and exc of types Object and
Throwable, respectively, are created fresh, that is, they are not declared anywhere
else in the context program. The execution tree for an abstract expression (Fig. 4b)
looks similarly, but as expressions can only complete normally or due to a thrown
exception, an abstract expression node only has two successors. We point out that
also expressions can have a non-empty frame, as in “x > y++”.

In the remainder of this section, we show how the states snormal, sexc etc. are
formally constructed. This is an important part of our framework, but not required
for understanding the sections that follow. Readers not interested in the formalism
can therefore safely skip to Sect. 3, where we describe how to use AE in practice.

Our central concept is the abstract update: for an APE P with frame frameP and
footprint footprintP, an abstract update UP(frameP :≈ \value(footprintP)) has
the same effect on the state as P. However, while P may complete abruptly (e.g.,
throw an exception), the abstract update always completes normally.

To express the symbolic input states for successors of APEs in the execution
tree, we need to apply symbolic stores to formulas: we write �Store�formula for
the transformation of formula according to Store. For example, �x := 17�x ≥ 0 is
equivalent to 17 ≥ 0 and thus to true.

Subsequently, we define the symbolic states resulting from the execution of
an abstract statement “\abstract_statement P;” in the symbolic state
(PC, Store). We write normalPost, excPre, excPost, etc., for the pre- and postcon-
ditions specified using JML “requires” and “ensures” clauses in the scope of
the respective behavior (“normal_behavior”, “exceptional_behavior”,
etc.).

2 The use of AE for Correctness-by-Construction has been explored in a Master’s thesis [53].
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Fig. 4 Execution tree fragments for abstract statements and abstract expressions. Symbolic input
states for tree nodes ((PC, Store), sexc, etc.) are annotated on the left-hand side of the nodes. (a)
Execution tree fragment for an abstract statement. (b) Execution tree fragment for an abstract
expression

Normal Completion
We use the abbreviation completesNormally to denote the negated disjunction
of the preconditions for all other completion modes: completesNormally ⇐⇒
¬(excPre ∨ returnPre ∨ breakPre ∨ continuePre). This precondition is evaluated
in the initial store Store, while the postcondition normalPost is evaluated in the
resulting store after the application of the abstract update (and can thus represent
constraints on the resulting state). In case the abstract statement is specified to
always complete abruptly in Store, the precondition �Store�(completesNormally)
evaluates to false. Then, this symbolic execution branch becomes infeasible and is
not followed any further. This holds similarly for all other branches discussed below.

Formally, we define the symbolic state snormal as

snormal := (PC ∪ {
�Store�(completesNormally),

�Store ◦ UP(frameP :≈ \value(footprintP))�(normalPost)
}
,

Store ◦ UP(frameP :≈ \value(footprintP)))
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Abrupt Completion Due to a Thrown Exception
The state sexc for completion due to a thrown exception is constructed similarly
to snormal, just with the appropriate pre- and postconditions. There is one
addition: we initialize the exception variable exc (see Fig. 4a) to a value
excP(\value(footprint)), where “excP” is a unary function symbol exclusively
introduced in symbolic execution of the abstract statement P: it is generated fresh
when first encountering P, but is re-used whenever another occurrence of P is
executed. We follow the same procedure for abstract update symbols UP. This is
especially useful for equivalence proofs, since abstract statements with the same
identifiers exhibit the same behavior—when executed in the same state. It is thus
essential to pass the current value of P’s footprint to the excP function, since P
might throw different exception objects for different initial execution states. The
variable exc can be referred to in the postcondition excPost to constrain the values
of the thrown exception object.

sexc := (
PC ∪ {

�Store�( excPre ),

�Store ◦ UP(frameP :≈ \value(footprintP)) ◦
(exc := excP(\value(footprint))) �( excPost )

}
,

Store ◦ UP(frameP :≈ \value(footprintP)) ◦
(exc := excP(\value(footprint)))

)

Abrupt Completion Due to a Returned Result
The symbolic state sret for a return statement of a result is constructed exactly
the same way as sexc for a thrown exception. If the abstract statement is executed in
the context of a voidmethod, the initialization of the res variable is omitted (and
the execution tree contains a “return;” instead of a “return res;” node). As
in the exceptional case, the postcondition returnPost can refer to the res variable
to characterize the returned result (in the context of a non-voidmethod).

sret := (
PC ∪ {

�Store�(returnPre),

�Store ◦ UP(frameP :≈ \value(footprintP)) ◦
(res := resultP(\value(footprint)))�(returnPost)

}
,

Store ◦ UP(frameP :≈ \value(footprintP)) ◦
(res := resultP(\value(footprint)))

)
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Abrupt Completion Due to a Break or Continue Statement
The state sbreak for abrupt completion due to a break looks exactly like snormal
for normal completion with different pre- and postconditions, as initialization of a
returned or thrown object is not required. If the abstract statement occurs outside
any loop, we omit this state and the corresponding node in the execution tree.

sbreak := (
PC ∪ {

�Store�(breakPre),

�Store ◦ UP(frameP :≈ \value(footprintP))�(breakPost)
}
,

Store ◦ UP(frameP :≈ \value(footprintP))
)

The continue case is analogous. For abstract expressions, snormal has a simpler
completesNormally condition (i.e., ¬excPre) and contains an initialization of the
res variable similar to sret for abstract statements; sexc is identical.

To reason about the symbolic states arising from the execution of APEs, we
provide a number of simplification and normalization rules for symbolic stores
with abstract updates. We refer to [47, Sec. 4.3.2] for their full definitions. We
demonstrate some of these rules in the following example.

Example 1 (Execution of the Slide Statements Model) We investigate the “normal
completion” case of the output model for the Slide Statements refactoring from
Listing 6, Fig. 3 on Page 206. The final state after executing the abstract statements
is

({frameA∩ footprintB = ∅, frameB ∩ footprintA = ∅, frameA∩ frameB = ∅,
mutexFormula,

¬throwsExcB(\value(footprintB)),

¬�UB(frameB :≈ \value(footprintB))�throwsExcA(\value(footprintA))},
(UB(frameB :≈ \value(footprintB)) ◦ UA(frameA :≈ \value(footprintA)))

)

For simplicity, we omit conditions on abrupt completion due to other reasons than
a thrown exception. The first four elements in the path condition stem from the
ae_constraint specification in Lines 1–11 in Listing 6, where mutexFormula
abbreviates the condition on mutual exclusion of abrupt completion (Lines 5–11).

First, we apply the abstract update UB(. . . ) to the throwsExcA expression in
the path condition and resolve the update concatenation in the store by the rule
transforming (Store1 ◦ Store2) to (Store1, �Store1�Store2), resulting in

({frameA ∩ footprintB = ∅, frameB ∩ footprintA = ∅, frameA ∩ frameB = ∅,
mutexFormula,

¬throwsExcB(\value(footprintB)),

¬throwsExcA(�UB(frameB :≈ \value(footprintB))�\value(footprintA))},
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(UB(frameB :≈ \value(footprintB)),

�UB(frameB :≈ \value(footprintB))�(UA(frameA :≈ \value(footprintA))))
)

Next, we simplify the application �UB(. . . )�UA(. . . ) in the store to

UA(frameA :≈ �UB(frameB :≈ \value(footprintB))�(\value(footprintA))).

The expression �UB(frameB :≈ \value(footprintB))�(\value(footprintA))
occurs two times in the resulting state: once in the path condition and once in
the symbolic store. Since the path condition contains the assumption frameB ∩
footprintA = ∅, we know that the assignments due to UB(. . . ) are irrelevant for
\value(footprintA); we deduce that we can drop �UB(. . . )� and obtain the much
simpler state

({frameA ∩ footprintB = ∅, frameB ∩ footprintA = ∅, frameA ∩ frameB = ∅,
mutexFormula,

¬throwsExcB(\value(footprintB)), ¬throwsExcA(\value(footprintA))},
(UB(frameB :≈ \value(footprintB)),UA(frameA :≈ \value(footprintA)))

)

There is one more rule we are going to apply; this time, it is not a simplification
but a normalization rule. The state we obtain by executing the input model for Slide
Statements in Listing 5 equals the one from above for the output model, with one
exception: the order of the abstract updates in the store. Indeed, we cannot simply
swap elements of a store, since a later element might overwrite assignments by an
earlier one. However, we know from the path condition that frameA ∩ frameB = ∅.
Therefore, we can apply a normalization rule reordering abstract updates according
to the lexicographic order of their identifiers. Our final result is

({frameA ∩ footprintB = ∅, frameB ∩ footprintA = ∅, frameA ∩ frameB = ∅,
mutexFormula,

¬throwsExcB(\value(footprintB)), ¬throwsExcA(\value(footprintA))},
(UA(frameA :≈ \value(footprintA)),UB(frameB :≈ \value(footprintB)))

)

This state is equivalent to the final state for the input model (as the path condition
is a set, the order of path constraints is irrelevant). Assuming that this also holds
for the abrupt completion cases, we conclude the equivalence of the input and
output models for Slide Statements, and follow that applying this transformation
is semantics-preserving for all concrete instantiations satisfying the constraints
we formalized.
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3 The REFINITYWorkbench

We implemented AE by extending the KeY [2] program prover. The extension
consists of ∼5.5k lines of JAVA and ∼400 lines of Taclet code. Taclets are KeY’s
language for SE rules, which we had to significantly extend for our AE taclets. More
implementation details are available in [47, Sec. 4.4].

Using this implementation, one can reason about programs containing APEs.
However, symbols such as dynamic frames and abstract predicates have to be
declared in KeY input files separately from the JAVA code. Proof obligations for
showing the equivalence of two abstract program fragments (which is the prime
application of AE and needed for our case studies described in Sects. 4 and 5) have to
be manually defined. Those proof obligations are all structurally similar, but tedious
to write from scratch. Additionally, there is no editing support for abstract programs,
which require a significant amount of JML specification lines.

Addressing these issues, we developed REFINITY [48], a workbench for
specifying and proving properties of statement-level JAVA code transformation
rules. A major driver for the development of REFINITY was an invited talk in
a tutorial session at iFM’19,3 where participants without any background in using
KeY successfully applied REFINITY to prove the correctness of two refactoring
techniques.

Figure 5 shows the REFINITY GUI. Input and output models for a transforma-

tion rule are written to the two text fields at marker 1 . When editing, one can

1

2

3

4
5 6

Fig. 5 The REFINITY window

3 https://ifm2019.hvl.no/refa/#pcrr.

https://ifm2019.hvl.no/refa/#pcrr
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use a number of keyboard shortcuts for creating stubs for APEs and transformation

constraints. Field 2 contains global program variables which can be referred

to in the input and output model. In the compartment labeled 3 , we define
dynamic frame variables used in the model (“LocSet” is the sort for abstract location
sets, i.e., dynamic frames). REFINITY models include by default an additional
location set “relevant” representing all relevant locations. If we do not impose
further constraints, for example, exclude some locations from relevant, correctness
has to be proven under the assumption that all locations are in this set. Abstract
predicates (like throwsExcA(. . . ) in the previous section) and functions are declared

in input field 4 .

Fields 5 and 6 specify global assumptions and proof objectives. The effects

of the abstract programs specified in field 1 are recorded in two sequences
\result_1 and \result_2 for the input and output model. Their elements can
be accessed using array syntax, for example, \result_1[0]. Positions 0 and 1
are reserved for returned results and thrown exceptions. Starting from position 2,

the final values of “relevant locations” declared in fields 5 (with the dynamic
frame relevant being the default) are stored. The standard postcondition, which

we see in field 6 , is \result_1==\result_2. Without constraints about
relevant, this specifies that returned values, thrown exceptions, and the whole
memory after termination have to be identical. More fine-grained postconditions
can also be specified: for example, if the first relevant location is an integer variable,
“\result_1[2]>2*\result_2[2]” is admissible. The global “Relational

Precondition” ( 6 ) has access to the initial values of free program variables

(field 2 ) and abstract location sets (field 3 ).
Pressing � transforms the model into a KeY proof obligation and starts the

automatic proof search. If KeY reports success, the specified model is correct. Saved
proof certificates can be validated against the loaded model using the� button.

During development of a new model, KeY will usually finish unsuccessfully,
leaving one or more proof goals open. In rare cases and for highly complicated
models, the reason could be that KeY needs more time or is not able to close
the proof although the model is valid—we hit a prover incapacity. In the latter
case, one can try to close the proof by interacting with the prover. More likely,
though, are problems in the model. Inspecting the open goals provides feedback
on how to refine the model to make it sound. Possible refinements include (1)
declaring the disjointness of dynamic frames, (2) imposing mutual exclusion on
abrupt completion behavior, (3) declaring a functional postcondition for APEs, and
(4) refining the relational postcondition or (4) adding a relational precondition.

The proof obligationREFINITY generates for KeY consists of a JAVA class with
two methods left(. . .) and right(. . .) containing the abstract program frag-
ments, and a problem description file containing proof strategy settings, declarations
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of variable, function, predicate, and abstract location set symbols and the proof goal
(expressed in KeY’s program logic “JAVA Dynamic Logic” [2]). Such proof goals
easily span around 40 lines in concrete syntax.

REFINITY spares the user from having to deal with such technicalities,
simplifying the modeling process. It automatically creates the mentioned files, starts
a KeY proof with reasonable presets, and displays proof status information in its
status bar. Additionally, it supports syntactic extensions unsupported by KeY.

Execution of Abstract Loops
Symbolic execution of loops requires advanced techniques: when loop guards are
symbolic, we cannot know the number of iterations after which the loop will
terminate. Frequently, loop invariants are employed to abstract loop behavior. A
loop invariant is a specification respected by every loop iteration, which can be used
to abstract away from the concrete loop regardless of the number of iterations. It
is generally hard to come up with suitable invariants; indeed, specifications have
been identified as the “new bottleneck” of formal verification (see, e.g., [2]). In
program equivalence proofs using functional verification techniques, one even needs
the strongest possible invariant for each occurring loop ([7], [47, Sec. 5.4.2]).

Luckily, there is a way to generically specify abstract strongest loop invariants
which we can use in AE. Assume a loop with guard g(x) operating on a single
variable x. The formula Inv(x) is a strongest loop invariant for that loop if it is (1)
preserved by every run, and (2) there is exactly one value v s.t. Inv(v) holds and
g(v) does not hold. Condition (2) means that there remains no degree of freedom
in the choice of the value of x after loop termination: Inv describes the exact, final
value. We can rewrite the condition to ∃v; ∀x; ((Inv(x) ∧ ¬g(x)) → x = v).

Generalizing this to a loop with an abstract expression as guard and dynamic
frame specification variables as frame and footprint yields a condition constraining
instantiations of abstract invariant formulas to abstract strongest ones. We can
add this condition as a precondition in REFINITY and use the abstract invariant
formula in our program. We refer to [47, Sec. 6.2] for a full account.

REFINITY can be downloaded at key-project.org/REFINITY/. It
comes with a number of examples to get started with modeling transformation rules.
The next three sections are devoted to particular applications of REFINITY and
AE.

4 Correctness of Refactoring Rules

Refactoring aims to change code in a way that does not alter its external behavior,
yet improves its internal structure [18]. In the context of software reengineering,
refactoring can contribute to better understandability, and thus to the maintainability
of a legacy system. Generally, refactoring is a risky process, especially for poorly
understood legacy systems. It has been shown that common refactorings can easily,
and accidentally, change a program’s behavior [15]. Most refactorings come with

https://www.key-project.org/REFINITY/
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preconditions. If those are not met, the transformed program might not compile,
or—which is worse—compile, but behave in a different way. Testing contributes to
safe refactoring, but can be misleading for insufficiently robust test suites [5].

In contrast to other code transformations, code refactoring is well supported in
modern IDEs. Unfortunately, relying on refactoring tools does not automatically
guarantee the preservation of program behavior [14, 44], as these tools typically
do not implement all preconditions [45]. Indeed, documentation of preconditions
for safe refactoring in literature is vastly incomplete, as we discovered in our case
study.

UsingREFINITY [48], we modeled nine statement-level refactoring techniques
from [17, 18], including two with loops. In an iterative process, we refined the
models by adding additional constraints, until we could prove them semantically
equivalent.

Most practically applied refactorings are confined to method bodies [43].
However, existing work on correctness of code refactoring almost exclusively
regards high-level techniques such as “move field” or “pull up method.” AE and
REFINITY thus focus on a significant blind spot by addressing statement-level
transformations.

By documenting precise preconditions for safe, statement-level refactoring, we
contribute insights useful for building more robust refactoring tools. Those can
eventually be adopted for structured reengineering of legacy systems.

In the remainder of this section, we outline our derived preconditions for
safe applications of the nine considered refactoring techniques. Note that since
we prove equivalence of input and output models, we simultaneously consider
dual refactoring techniques (such as Inline Method for Extract Method). A more
detailed account and full abstract program models are provided in [47, Sec. 6.3 and
Appendix E].

Slide Statements
We already discussed Slide Statements in Sect. 2.1. The idea of this technique is to
reorder statements to keep those together which fulfill a common purpose [18]. Let
frameA/frameB and footprintA/footprintB be the frames and footprints of the par-
ticipating statements A and B, respectively. We derived the following preconditions
(only the first three of which are documented in [18]):

1. frameA and frameB have to be disjoint.
2. frameA and footprintB have to be disjoint.
3. frameB and footprintA have to be disjoint.
4. A may only complete abruptly if B completes normally, and vice Versa.
5. if A completes abruptly, B performs no assignments relevant to the outside, and

vice versa.

Consolidate Duplicate Conditional Fragments
This variation of Slide Statements consists in moving code that is executed in all
branches of a conditional statement to outside that conditional. We modeled four
variants: extracting (1) a common prefix from an if statement, (2) a common
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postfix from an if statement, (3) a common postfix from a try-catch statement
to after the try-catch, (4) a common postfix from a try-catch statement
to the finally branch of the try- catch. The two variants (3) and (4) are
distinguished due to an ambiguity in the refactoring’s description (“(moving) to the
final block” [17]).

Variant (1) comes with the very same preconditions as Slide Statements. Vari-
ant (2) can be applied without preconditions. The extraction of a postfix from
a try statement (variant (3)) to after that statement can be applied under the
assumption that P does not throw an exception, which also can be deduced from
the description in [17]. Furthermore,P must not access the caught exception object.
Those restrictions also apply for variant (4). For this variant of the refactoring,
schematically

try { Q1 P } catch (T e) { Q2 P }

ù try { Q1 } catch (T e) {Q2 } finally { P }

we derived the additional, unmentioned precondition thatQ1 must not complete due
to a return. Otherwise, P would be executed after, but not before the refactoring.

Consolidate Conditional Expression
For the case of sequential or nested conditionals with “the same result” [17], this
refactoring proposes to merge these into a single check to improve clarity. The two
variants of this technique are schematically represented as

if (expr1) { P } if (expr2) { P } if (expr1) { if (expr2) { P } }

ù if (expr1 || expr2) { P } ù if (expr1 && expr2) { P }

Our interpretation of “have the same result” is that P always returns or throws
an exception (as in all examples in [17]). Thus, P is never executed twice in the
sequential case. In the case of nested if statements, P can complete arbitrarily.

Both variants can be applied without additional preconditions. Fowler mentions
that conditionals must not have any side effects, which is, however, only necessary
for logical connectors without short-circuit evaluation (i.e., “|” and not “||”, etc.).

Extract Method, Decompose Conditional, and Move Statements to Callers
Method extraction is a well-known refactoring technique implemented in many
IDEs. According to [17], it may be applied if the extracted code does not assign
more than one local variable referenced in the outside context. We discovered two
additional, unmentioned constraints: (1) The extracted fragment must not return,
since this changes control flow. (2) If the newly created method is a query and the
extracted fragment throws an exception, it must not change the value of the returned
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query result variable before. For the second precondition, consider the following
example:

1 int avg = ERROR;
2 try {
3 avg = sumOfElems(intList);
4 avg /= intList.size();
5 } catch (ArithmeticException ae) {}
6 averages.add(avg);

ù

int avg = ERROR;
try {

avg = average(intList);

} catch (ArithmeticException ae) {}
averages.add(avg);

When presented an empty list, the computation of the average in Line 4 will
complete abruptly because of a division by 0. Thus, the value of avg will be 0
(the sum of no elements) at Line 6 before the refactoring, while its value after the
transformation is that of the constant ERROR: The method average completes
abruptly and avg is not assigned in Line 3. One might argue that this is an
improvement; still, it is not semantics-preserving. What is more, as we always
prove semantic equivalence, the reverse direction Inline Method is also covered.
In the example, one would introduce a bug when following the reverse direction and
inlining method average.

Decompose Conditional [17] is a variant where condition and both branches of an
if statement are extracted to individual methods. For the branches, this is identical
to Extract Method; there is no precondition for the extracted condition.

Move Statements to Callers [18] is a variant of Inline Method where a prefix
(and not the whole body) of a method is moved to the callers. Conversely, Move
Statements into Method moves statements before an invocation to inside the called
method. The same restrictions as for Extract Method/Inline Method apply.

Replace Exception with Test
In our example for Extract Method above, we used a try statement to react to
the expected behavior that a list can be empty. Instead, we could have tested
the list for emptiness, and reserved exceptions for unexpected behavior. Observe
that then, method extraction of the two statements computing the list’s average
would even have been safe. This observation, on the other hand, suggests that
the Replace Exception with Test is not generally semantics-preserving, though
no restrictions are mentioned in literature. Assume a statement P throws an
exception if the condition cond holds. Replace Exception with Test transforms
“try { P } catch (. . .) { Q }” to “if (!(cond)) { P } else { Q }”.
In our first proof attempt, we found the problem that if P throws an exception, it
might change the relevant state before completing. After the refactoring, this is no
longer the case (cf. the change to the variableavg above).We derived four scenarios
under which this refactoring is safe:

One can safely apply Replace Exception with Test if it either holds that (1) the
frame of P is disjoint from the set of relevant locations and from the frame of Q
(it may still influence Q’s behavior by writing to its footprint), or (2) the frames of
P and of Q are disjoint from the set of relevant locations, andQ always completes
normally, or (3) the frame of P is disjoint from the footprint of Q, and Q has
to assign all locations assigned by P , or (4) statement Q starts with a “rollback”
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resetting all locations in the frame of P to independent values. None of these
conditions have been mentioned before.

Split Loop
Loop splitting is a common optimization technique which we also address in
Sect. 5 and 6. Apart from being useful for, for example, code parallelization,
it contributes to readability by dividing loops with separate concerns, and
by clearing the way for subsequent optimizations such as the replace-
ment by stream operations. Schematically, “while (g) { P Q }” gets
“while (g) { P } while (g) { Q }”. We isolated the following
sufficient preconditions: (1) The frames of P and Q have to be disjoint from
the footprint of g, and the frame of g is empty, (2) the frames of P and Q have to
be disjoint, (3) the frame of P must be disjoint from the footprint of Q, and vice
versa, (4) the guard g and statement P must not complete abruptly, and (5)Q must
not complete abruptly before g and P committed their final results (or, established
their invariants). None of these have been documented in [17, 18].

Observe that loops over an iterator (with a guard like “it.hasNext()”) do
not satisfy these preconditions: a call to “it.next()” in P orQ changes the state
on which the evaluation of g depends, which is not allowed due to condition (1).
Therefore, it is not safe to apply Split Loop to such loops.

Remove Control Flag
Instead of using a “control flag” for deciding when to terminate a loop, this refactor-
ing suggests to resort to break or continue statements to better communicate
the intended control flow. The shortcut associated by the introduction of abrupt
completion, however, generally breaks semantic equivalence. Any code that would
have been executed after setting the control flag (which is skipped by the shortcut)
must not have effects visible outside the loop. Otherwise, it has to be duplicated:

while (!done && g) { if (cond) { P done=true; } Q }

ù while ( g) { if (cond) { P Q break; }Q }

Relying on the mechanics described in [17] likely produces incorrect results.
We proved both Slide Statements and Remove Control Flag using abstract

strongest invariants. For Remove Control Flag, we apply an even stronger type of
loop invariant also considering abrupt completion (standard invariants only have to
hold at loop entry, and not after (abruptly) leaving the loop).

In the subsequent two sections, we regard code transformations from an opti-
mization point of view: how can we transform code such that it can be better
parallelized (Sect. 5), and what is the effect of a transformation on execution cost
(Sect. 6)?
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5 Restructuring for Parallelization

Legacy systems were typically developed before the widespread use of modern
software engineering techniques [40] like parallel programming interfaces such as
OpenMP. Adapting existing sequential legacy software to parallel environments can
save time and money, while avoiding the loss of domain knowledge. One powerful
method to parallelize programs are parallel design patterns [24, 34] embodying best
practices and correct as well as efficient usage of parallelization interfaces. This even
yields a semi-automatic approach [38] for migrating sequential to parallel code.

As legacy code was not written with parallel patterns in mind, it often does not
allow immediate application of a pattern: a certain amount of prior code restructur-
ing is unavoidable in most cases. The DiscoPoP [38] framework implements a small
number of sequential code transformation schemata that frequently suffice to bring
sequential code into the form required for the application of a parallel pattern. To
ensure that the parallelized program retains the functionality of the original legacy
code, it is essential to ensure the correctness of the sequential restructuring rules.

In [22], we focused on three representative restructuring techniques, isolated con-
ditions under which they are safe to apply, and proved—using Abstract Execution
and REFINITY—that these conditions are sufficiently strong. Those schemata,
previously developed within the DiscoPoP framework, are (1) Computational Unit
(CU) Repositioning, (2) Loop Splitting, and (3) Geometric Decomposition. The
latter two are loop transformations using an advanced memory layout specification
mechanism. The corresponding proofs are, for a change, not fully automatic but
require a small number of manual rule applications (<0.3% of all applications).
We brief the most relevant aspects of the formalizations and proofs for these three
schemata.

CU Repositioning
A CU is a piece of code with little to no internal parallelism, and the basic unit of
dependence graphs generated by DiscoPoP. CU Repositioning prepares code for an
application of the pipeline pattern. In a pipeline, each unit can depend on units in
prior stages, but not in later stages [35]. To enable this pattern, it is sometimes
required to reposition a later occurring CU to the first CU, merging those into
a single CU. In practice, this usually means to move statements occurring after
a loop or call to before that loop/call. CU Repositioning is an instance of Slide
Statements (cf. Sect. 4) with the same preconditions. This is a notable connection
between refactoring and parallelization: the same transformation can serve different
purposes.

Loop Splitting
Loop Splitting is an optimization splitting one into several loops. Here, it is used
to enable the Do-All parallel design pattern, which requires that there are no data
dependences between different loop iterations. When an initial segment of iterations
does have external dependences, we can factor out this segment and applyDo-All to
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Fig. 6 Abstract memory
layout for Loop Splitting of a
loop with t iterations at index
D

the remaining iterations. Loop Splitting is a special case of the Split Loop refactoring
additionally requiring that the parts that are to be parallelized are independent.

Our REFINITY model thus sets up a more advanced memory layout, as
depicted in Fig. 6. Each of the t loop iterations operate on their own set of memory
locations subFrame(i). Assuming that we factor out the first D + 1 iterations,
the precondition on the correctness of the restructured sequential code is that
subFrame(0) to subFrame(D) (the part pulled out) are disjoint from subFrame(D +
1) to subFrame(t − 1) (the subjects to Do-All). In addition, the location sets
subFrame(D+ 1) to subFrame(t− 1) have to be disjoint from each other, which is
a prerequisite for Do-All.

This modeling technique using a family of location sets required extensions of
AE andREFINITY. The existing proof strategies are yet lacking dedicated support
for the arising constraints, which is why we had to perform 7 simple and 16 non-
trivial proof steps (out of a total of 15,600 steps) manually, which amounts to 0.1%.

Geometric Decomposition
If a program can be understood as a sequence of operations on a main data
structure, often the best way of parallelization is to decompose this structure.
Lists, for example, can be decomposed into substructures in a similar manner as
dividing a geometric region into subregions—hence the name. We focused on the
decomposition of a loop with t iterations into N loops of size t/N. These N loops
can then be run in parallel.

Geometric Decomposition is a generalization of Loop Splitting: instead of
dividing a loop into two parts, it is split into N > 1 parts. Our model uses
a similar abstract memory setup as for Loop Splitting. The essential correctness
precondition is that each bundle of iterations of size t/N has to operate on a separate
memory region.

This transformation is the most complex one proven with AE up to now. The
proof consists of ~84k rule applications, of which 215 are manual (0.26%).

6 Cost Analysis of Transformation Rules

Apart from running previously sequential code in parallel, one can aim at reducing
the execution cost of sequential code by applying optimizing transformations, as
exercised by many compilers [1]. What is more, when transforming code for
different reasons (e.g., during code refactoring), one may be concerned about
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the impact on execution cost. A good example is Split Loop: naively, one could
use performance as an argument against dividing one loop into two, disregarding
understandability of the resulting code. However, the overhead attached to loop
splitting merely consists in double evaluations of the loop guard, which often is
negligible.

Cost analysis for individual programs has been addressed by a plethora of tools
(e.g., [3, 21, 23]). The relative cost of different concrete programs has been subject to
formal analyses (e.g., [39]). However, the cost impact of program transformations,
which can be coined as the relative cost of two schematic programs, has not been
studied before. We proposed Quantitative Abstract Execution (QAE) [4], the first
approach to analyze the cost of schematic programs and thus of transformations.

Our technique combines a new frontend to the COSTA cost analyzer [3] and an
extension of the AE framework implemented in KeY to a fully automatic toolchain.
Its workflow is visualized in Fig. 7. One starts with an abstract program and a cost
model (number of instructions, allocated memory, etc.) which are input to the cost

analyzer 1 . Each cost model comes in three flavors differing in their strength.
Those are, in descending order, exact, upper bound, and asymptotic cost. Generally,
we try to derive exact bounds first. The output of the analyzer is a cost bound w.r.t.
the chosen cost model and a set of cost invariants and ranking functions for each
loop in the program. We enrich the initial transformation model by translating this
quantitative information to the QAE specification framework. The result of this is

given to the QAE implementation on top of KeY 2 . We use a proof strategy
specifically tailored to the kinds of constraints arising in QAE to obtain a certificate
for the correctness of the cost bounds in the chosen strength. If the certification

process succeeds, we save the certificate and output the bounds 3 . Otherwise,
we weaken the strength of the cost model: from exact cost we descend to upper

bound and later to asymptotic cost. Then, we continue at 1 . Alternatively, one can

inspect the failed proof attempt to obtain feedback for improving components 1

or 2 .

Fig. 7 Workflow of our approach to cost analysis of transformation rules
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We implemented our toolchain as a command-line application. Excluding the
libraries, and not counting blank lines and comments, it consists of 1,803 lines of
PYTHON code (the extension of the cost analyzer), 703 lines of JAVA code (the
conversion tool transforming the output of the cost analyzer to input files for KeY),
and a 389-line bash script implementing the overall workflow.

We evaluated our approach for seven typical code optimization rules. In six cases,
we used the number of executed instructions as a cost model, and in one case the
heap consumption. The result consists of abstract cost bounds parametric in the
concrete cost of the schematic elements from the transformation model. For the
case of Split Loop, for example, we obtain a bound like (#it + 1) · (2 · costg(fpg) +
costP (fpP ) + costQ(fpQ)

)
after the transformation, where #it is the number of

iterations, and costx /fpx the abstract cost placeholder symbol and cost footprint for
APE x, respectively.

Cost analysis took about 50 ms for each problem, while performing the proofs
took between 13 s and 30 s. All proofs worked fully automatically and did not
require manual auxiliary specifications, which was possible for three reasons: (1)
We focused exclusively on quantitative aspects, leaving aside semantic equivalence
(which can be verified separately). Dynamic frames are replaced by representative
sets of program variables that can be handled by the cost analyzer. (2) The cost
analyzer automatically produced cost invariants for loops and ranking functions
needed to show termination. (3) Our new proof strategy, integrating external SMT
solvers and different strategies for handling arithmetic problems, proved to be
effective for all problems at hand.

7 Conclusion and Future Work

Legacy software systems are challenging both researchers and practitioners with
an intricate problem: Transform substantial code bases of high value, but poorly
performing, insufficiently documented, and abandoned by most of their original
developers, into a system implementing the same functionality, but making use of
modern software engineering techniques and best practices.

Software reengineering addresses this problem. It generally consists of two
phases: (1) A requirements extraction and reverse engineering phase aiming for
a better understanding of the legacy system and the reengineering goals; and (2) a
forward engineering phase carrying out the actual transformation.

Phase (2) constitutes the critical step: here, behavior can be altered, and domain
knowledge and ultimately money can be lost. Testing alone is generally insufficient
in the presence of sparse existing test suits, as writing meaningful new test cases
requires insight into the legacy system and the domain knowledge it implements.

We addressed this by proposing structured software reengineering: instead of
changing code arbitrarily and relying on tests (or good luck), we suggest to use
proven-correct code transformations from a predefined catalog for incrementally
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changing a legacy system. Correctly applied, this approach guarantees the preserva-
tion of all functional behavior of the input system. Furthermore, transformations
can have clear nonfunctional objectives, such as improving readability, runtime
performance, or amenability to parallelization.

To kick-start a catalog of proven transformation techniques, we developed
Abstract Execution (Sect. 2), the first general-purpose framework for automatic rea-
soning about statement-level JAVA code transformations, and REFINITY (Sect. 3),
a workbench for encoding and proving transformations. We used these tools to (1)
derive preconditions for safe code refactoring and prove them sufficient (Sect. 4),
(2) prove the safety of transformations used by code parallelization tools to prepare
sequential code for the application of parallel design patterns (Sect. 5), and (3)
develop an automatic approach to assess the cost impact of program transformations
(Sect. 6).

There are many directions for future work on structured software reengineer-
ing: (i) Extending the catalog of proven-correct transformation techniques. For
transformations above statement level, other techniques could be leveraged. (ii)
Efficient checks for whether a transformation specified in AE is applicable for a
program remain to be implemented (a prototypical demonstrator is contained in
REFINITY). (iii) The AE approach could be adapted to different programming
languages, or even to differing languages for source and target of a transformation,
to address, for example, Cobol programs which the financial industry still relies on.
The feasibility of this is demonstrated by an earlier work addressing the translation
of JAVA to LLVM IR using a simple version of abstract statements and updates [49].
(iv) To find its way into industrial practice, structured software reengineering
needs robust, usable tool support. We envision an IDE with drag’n’drop support
of transformations from a catalog (including documentation) onto the code, with
automatic sanity checks, or, where this is not possible, automatically generated
test cases or at least appropriate warnings. One could even think of automating the
process by automatically matching and applying transformations contributing to a
selected optimization goal.

Software has come to stay. Structured software reengineering contributes to
sustainable software life cycles whenever it stays longer than expected.
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