
REFINITY to Model and Prove Program
Transformation Rules?

Dominic Steinhöfel[0000−0003−4439−7129]

TU Darmstadt, Dept. of Computer Science, Darmstadt, Germany
steinhoefel@cs.tu-darmstadt.de

Abstract. REFINITY is a workbench for modeling statement-level trans-
formation rules on Java programs with the aim to formally verify their
correctness. It is based on Abstract Execution, a verification framework
for abstract programs with a high degree of proof automation, and in-
terfaces with the KeY program prover. We describe the user interface
and functionality of REFINITY, and illustrate its capabilities along the
application to proving conditional correctness of a code refactoring rule.

1 Introduction
Systematic program transformations are ubiquitous in modern program develop-
ment. Which programmer has never used a refactoring technique like method ex-
traction, not to mention a compiler? Further, less mundane transformation-based
approaches comprise optimization, incremental program development which is
“correct-by-construction” [9] or program synthesis from a high-level specifica-
tion. The latter two are examples for domains where correctness is built into the
problem statement; yet, the question of correctness is also relevant, and has been
approached, in other areas [5, 10, 12–14, 17]. Mechanized correctness arguments
about code transformations are frequently conducted in interactive environments
like Isabelle or Coq. An example is the work on verified compilers [12, 17]. While
this approach permits expressing a wide range of properties, substantial effort
has to be invested to prove them manually by writing proof scripts. Existing ap-
proaches to prove transformations automatically, on the other hand, are tailored
to specific applications (such as regression verification [6], “peephole” optimiza-
tions [13] or symbolic execution rules [2]) and lack expressiveness.

Proving the correctness of program transformation rules is a second-order
property involving quantification over programs. It can be understood as a
relational verification [3] problem over schematic programs. For example, the
schematic programs “p q” and “q p” (where p, q represent arbitrary statements)
describe a transformation swapping two statements. It is correct if we can prove,
as usual under additional assumptions, that all instances of those two pro-
grams behave equivalently. Recently, Abstract Execution (AE) has been pro-
posed [15, 16], a technique for proving properties of abstract (i.e., schematic)
? This work was funded by the Hessian LOEWE initiative within the Software-Factory 4.0

project. The final authenticated version is available online at https://doi.org/10.1007/
978-3-030-64437-6_16.

https://doi.org/10.1007/978-3-030-64437-6_16
https://doi.org/10.1007/978-3-030-64437-6_16

2 Dominic Steinhöfel

programs by symbolic execution. AE bridges the gap between expressiveness
and automation by restricting the class of addressable problems to a (reason-
ably big) subset—universal properties of program behavior—while at the same
time offering a versatile specification framework. Many transformations, even
loop transformations, can be proven fully automatically using AE, including the
example regarded in this paper and the complete refactoring case study of [15].1

AE is implemented on top of KeY [1], a deductive verification framework for
Java programs based on symbolic execution. AE extends the Java language by
Abstract Statements (ASs) “\abstract_statement P;”, and Abstract Expres-
sions (AExps) “\abstract_expression T e;”, where P and e are the identi-
fiers of the abstract statement / expression, and T is the type of the abstract
expression e. Programs containing ASs or AExps are called abstract programs.

In this paper, we present REFINITY, a graphical tool for modeling statement-
level program transformation rules based on AE. REFINITY supports the speci-
fication of abstract programs representing inputs and outputs of transformation
rules and of relational pre- and postconditions defining the proof objective. It
automatically generates non-trivial proof obligations for the KeY prover and ini-
tiates an automatic proof attempt. Thus, it significantly eases the workflow of
specifying, proving and refining transformation models. We describe how to use
REFINITY to model and prove statement-based refactoring techniques.

Related Work REFINITY is, to our knowledge, the only existing relational verifi-
cation tool for abstract programs, and, thus, for general source-to-source program
transformations. Therefore, we can only compare our work to existing tools for
verification of concrete programs. LLRêve [8], for instance, is a tool for automat-
ically proving the equivalence of two C programs. SymDiff [11] is a “differential
program verifier.” Both operate on intermediate languages (LLVM IR and Boo-
gie) and use advanced techniques for automatically relating loops and recursive
procedures. REFINITY relies on manually specified loop invariants and method
contracts, and therefore requires more interaction for concrete code. However,
loop invariants in abstract contexts can frequently be specified generically [15].

Organization Subsequently, we describe REFINITY’s specification language for
abstract programs along an illustrating example. Sect. 3 shows how to model and
prove this example transformation in REFINITY. Sect. 4 concludes the paper.

REFINITY can be downloaded at key-project.org/REFINITY/, where we
also publish continuously updated documentation material. Additional support
can be obtained via email to the author of this paper, or via the channels men-
tioned at key-project.org/getting-started/. Furthermore, most GUI ele-
ments of the tool provide tooltips with brief help texts.

2 Specifying Abstract Programs
We explain the most relevant elements of REFINITY’s specification language for
abstract programs along a code refactoring rule. REFINITY is a frontend for AE

1 Generally, proofs may require user interaction, especially when relying on incomplete
theories like first-order arithmetic.

https://www.key-project.org/REFINITY/
key-project.org/REFINITY/
https://www.key-project.org/getting-started/
key-project.org/getting-started/

REFINITY to Model and Prove Transformation Rules 3

Listing 1: Input Program
try {

TryStmt // throws exc. if cond holds
} catch (Throwable t) {

CatchStmt
}

Listing 2: Output Program
if (!cond) {

TryStmt
} else {

CatchStmt
}

Fig. 1: The Replace Exception with Test Refactoring Schema

Listing 3: Input Program
try {

z = 42;
y = z / x;

} catch (Throwable t) {
y = z; // <- rollback
flag = true;

}

Listing 4: Output Program
if (x++ != 0) { // side effect in condition

z = 42;
y = z / x;

} else {
y = z; // rollback incomplete + depends on TryStmt
flag = true;

}

Fig. 2: Examples for Violated Constraints (Replace Exception with Test)

and uses its specification framework. Our aim here is not to provide a complete
introduction to the AE framework, for which we refer to [15].
Refactoring is the process of changing code in a way that does not alter its
external behavior, yet improves its internal structure [4]. The Replace Exception
with Test (REwT) refactoring proposes to introduce a check for a condition
causing an exception when it is reasonable to expect that the condition can be
checked. A good example is a division of two numbers put into a try–catch
block since an ArithmeticException is raised if the divisor is zero. Figure 1
visualizes this schema. REwT is a good example since it is generally unsafe due
to a subtlety: If TryStmt changes relevant parts of the state before throwing
an exception, the programs before and after the refactoring behave differently.
Consider, e.g., an instantiation of TryStmt with “z = 42; y = z / x;”: If x is
0, and the value of z is not changed by CatchStmt, the final value of z is 42
before the transformation, but equals the original value after.

One can create a provably correct model of REwT by demanding a statement
Rollback before CatchStmt “resetting” locations changed by TryStmt. For the
example, we could choose “x=0; z=0;” for Rollback. Note that the assigned
rollback values must not depend on locations changed by TryStmt.

In the following, we call the locations that may be changed by abstract
statements or expressions their frame, and the locations they may read their
footprint. We have to encode the following constraints into the refactoring model:
(1) TryStmt throws an exception iff cond holds, (2) cond has no side effects,
(3) Rollback must assign the whole frame of TryStmt, and (4) the frame of
TryStmt and the footprint of Rollback must be disjoint. Figure 2 shows a “non-
legal” example instantiation where Constraints (2) to (4) are violated.

4 Dominic Steinhöfel

Listing 5: Input Model
1 /*@ ae_constraint \disjoint(
2 @ footprintRollback, frameTry);
3 @*/
4

5 try {
6

7

8

9

10

11

12

13

14

15 /*@ assignable frameTry;
16 @ accessible footprintTry;
17 @ exceptional_behavior requires
18 @ throwsExcTryStmt(
19 @ \value(footprintTry)); */
20 \abstract_statement TryStmt;
21 } catch (Throwable t) {
22 /*@ assignable \hasTo(frameTry);
23 @ accessible footprintRollback;
24 @*/
25 \abstract_statement Rollback;
26

27 /*@ assignable frameCatch;
28 @ accessible footprintCatch;
29 @*/
30 \abstract_statement CatchStmt;
31 }

Listing 6: Output Model
/*@ ae_constraint \disjoint(

@ footprintRollback, frameTry);
@*/

if (
/*@ assignable \nothing;

@ accessible footprintTry;
@ normal_behavior ensures \result
@ <==> !throwsExcTryStmt(
@ \value(footprintTry));
@ exceptional_behavior
@ requires false; @*/

\abstract_expression boolean cond
) {

/*@ assignable frameTry;
@ accessible footprintTry;
@ exceptional_behavior requires
@ throwsExcTryStmt(
@ \value(footprintTry)); */

\abstract_statement TryStmt;
} else {

/*@ assignable \hasTo(frameTry);
@ accessible footprintRollback;
@*/

\abstract_statement Rollback;

/*@ assignable frameCatch;
@ accessible footprintCatch;
@*/

\abstract_statement CatchStmt;
}

Fig. 3: Abstract Program Model for Replace Exception with Test

To impose constraints on the frames and footprints of abstract elements,
we have to define which locations ASs and AExps may write and read. How-
ever, no additional constraints than the mentioned ones should be enforced:
Frames and footprints should match to all programs satisfying Constraints (1)
to (4). We achieve this by using abstract, set-valued specification variables in-
spired by the theory of dynamic frames [7]. Concretely, we introduce constants
frameTry/footprintTry, footprintRollback, and frameCatch/footprintCatch, each
representing an unknown set of concrete program variables or heap locations.

The complete abstract program model for Replace Exception with Test is
shown in Fig. 3. Constraints on ASs and AExps are imposed using specification
comments starting with “@”. In lines 6/7, 15/16, 22/23, and 27/28, we assign
the newly introduced abstract location set variables to the abstract program
elements, where the keyword assignable specifies a frame, and accessible a
footprint of an AS or an AExp. To realize constraint (3), we put a “\hasTo”
specifier around the frame specification of Rollback. Without \hasTo, frame
and footprint specifications are only upper bounds.

REFINITY to Model and Prove Transformation Rules 5

Constraint (1) is implemented by specifying a precondition on abrupt com-
pletion due to a thrown exception for TryStmt in lines 17–19. The specification
language keyphrase used is “exceptional_behavior requires”. There are two
things to explain: i) The symbol throwsExcTryStmt is a new abstract predicate
introduced for specification purposes, and ii) the term “\value(footprintTry)”
represents the value of the location set footprintTry at this point in the program:
The locations represented by footprintTry do not change during program exe-
cution, while their values can change. It remains to specify that cond evaluates
according to the negated value of the predicate throwsExcTryStmt. In lines 8–
10, we constrain the expression’s value (represented by \result) accordingly.
The specification keyphrase “normal_behavior ensures” is used to declare a
functional postcondition on the normal completion behavior of cond.

For constraint (2) (cond is side effect-free), it suffices to specify that the
frame of cond is empty (“assignable \nothing”, line 6) and that it throws an
exception iff “false” holds (lines 11&12)—i.e., never.

Finally, the disjointness of the frame of TryStmt and footprint of Rollback
(Constraint (4)) is imposed on instantiations of the model by lines 1–3. The
keyword “ae_constraint” initiates the declaration of a constraint. Apart from
\disjoint, also other relations, like \subset, are supported.

This example covers all essential specification language features. We did not
cover advanced features like abstract functions (similar to abstract predicates,
but non-boolean), indexed abstract location set families (useful for involved loop
transformations), and mutual exclusion of abrupt completion behavior (using the
“\mutex” keyword in ae_constraints). See [15] for a full account.

Expressiveness REFINITY addresses statement-level transformation rules and is
additionally limited to universal, behavioral properties supported by AE. Trans-
formations above statement level, e.g., moving a field, cannot be expressed. The
same holds for structural properties which cannot be written using a fixed ab-
stract program scaffold with only “behavioral holes.” An example is a property
addressing all statements with at most three loops: This is not expressible, since
any AS with non-empty semantics represents statements with an arbitrary num-
ber of loops. Statements with at least three loops are in scope, since one can
write an abstract program with three loops of arbitrary guards and bodies.

In the following section, we demonstrate how REFINITY can be used to model
and prove program transformation rules such as Replace Exception with Test.

3 REFINITY in Action
Fig. 4 shows the abstract program model for Replace Exception with Test in the
REFINITY GUI. The abstract program fragments representing input and output
of the transformation are written to the two text fields at marker 1 . Field 2
contains free program variables which can be referred to in the input and out-
put model without declarations; we do not need this feature in our example.
In the compartment labeled 3 , we define abstract location set specification
variables used in the model, i.e., frameTry/footprintTry, footprintRollback, and
frameCatch/footprintCatch. REFINITY models include as default an additional

6 Dominic Steinhöfel

1

2

3

4
5 6

Fig. 4: The REFINITY Window

location set “relevant” representing all relevant locations. If we do not impose
further constraints, e.g., exclude some locations from relevant, correctness has
to be proven under the assumption that all locations are in this set. The sort for
abstract location sets is “LocSet”. The abstract predicate throwsExcTryStmt is
declared in input field 4 . The argument sort “any” in the declaration is a super
type of all types. We use “any” since we pass the value of an abstract location
set to the predicate which can be instantiated to any type.

Fields 5 and 6 specify global assumptions and proof objectives for the
model. The effects of the abstract program fragments specified in field 1 are
recorded in two sequences \result_1 and \result_2 for the input and out-
put model. Their elements can be accessed using standard array syntax, e.g.,
\result_1[0]. If an abstract program completed due to a return of a value,
position 0 in the sequence contains the returned value. Likewise, if it completed
due to a thrown exception, the exception object is stored at position 1. Starting
from position 2, the final values of “relevant locations” declared in fields 5 (in
the order defined there) are stored. In the example, the abstract set relevant is
the only relevant location set, which is also the REFINITY default. The standard
postcondition, which we see in field 6 , is \result_1==\result_2. Without
constraints about relevant, this specifies that returned values, thrown exceptions,
and the whole memory after termination have to be identical. More fine-grained
postconditions can also be specified: e.g., when an integer variable is registered
as first relevant location, “\result_1[2]>2*\result_2[2]” is admissible.

The global “Relational Precondition” (6) has access to the initial values of
free program variables (field 2) and abstract location sets (field 3). For the
example, we did not specify a global precondition.

A model can be saved in REFINITY’s XML-based format using Ô. Pressing
� transforms the model into a KeY proof obligation and starts the automatic

REFINITY to Model and Prove Transformation Rules 7

proof search. If KeY reports success, the specified model is correct. Saved proof
certificates can be validated against the loaded model using the� button. Proofs
of correctly specified refactorings without loops usually take between 30 seconds
and two minutes; for loop transformations, three minutes and more are possi-
ble. During development of a new model, KeY will usually finish unsuccessfully,
leaving one or more proof goals open. In rare cases and for highly complicated
models, the reason could be that KeY needs more time or is not able to close the
proof although the model is valid—we hit a prover incapacity. In the latter case,
one can try to close the proof by interacting with the prover. More likely, though,
are problems in the model. Inspecting the open goals provides information on
how to refine the model to make it sound. Possible refinements include

(1) declaring the disjointness of abstract location sets,
(2) imposing mutual exclusion on abrupt completion behavior,
(3) declaring a functional postcondition for ASs or AExps, and
(4) refining the relational postcondition or
(5) adding a relational precondition.

The proof obligation REFINITY generates for KeY consists of a Java class
with two methods left(. . .) and right(. . .) containing the abstract program
fragments, and of a problem description file containing proof strategy settings,
declarations of variable, function, predicate, and abstract location set symbols
and the proof goal (expressed in KeY’s program logic “Java Dynamic Logic” [1]).
The proof goal for Replace Exception with Test in concrete syntax spans 36 lines.
In a condensed representation, it has the form

{_result := null || _exc := null}
¬〈try { _result=obj.left()@Problem; }

catch (Throwable t) { exc=t; }〉
¬P (_result, _exc, value(relevant))

∧ {_result := null || _exc := null}
¬〈try { _result=obj.right()@Problem; }

catch (Throwable t) { exc=t; }〉
¬Q(_result, _exc, value(relevant)) ∧ Pre ∧ · · ·

` ∃ Seq s1, s2; (P (s1) ∧Q(s2) ∧ Post(s1, s2))

where obj is the object under test, Pre and Post are the global precondition and
relational postcondition, and P and Q are fresh predicates.

REFINITY spares the user from having to deal with such technicalities, sim-
plifying the modeling process. It automatically creates the mentioned files, starts
a KeY proof with reasonable presets, and displays proof status information in its
status bar. Additionally, it supports syntactic extensions unsupported by KeY.

4 Conclusion
In this paper, we presented REFINITY, a graphical workbench for modeling
and proving Java program transformation rules based on Abstract Execution,

8 Dominic Steinhöfel

a verification framework for abstract programs. We demonstrated how to use
REFINITY by showing how to specify and prove correct a refactoring rule with a
subtle snag. This builds on previous work, where “vanilla” AE has been used to
prove the correctness of several statement-based refactoring rules [16]. REFINITY
significantly eases the modeling process, making AE more accessible. For the
future, we plan to further increase REFINITY’s usability and apply it to different
types of program transformations than refactoring rules.

References
1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):

Deductive Software Verification – The KeY Book, LNCS, vol. 10001. Springer
(2016)

2. Ahrendt, W., Roth, A., Sasse, R.: Automatic Validation of Transformation Rules
for Java Verification Against a Rewriting Semantics. In: Sutcliffe, G., Voronkov,
A. (eds.) Proc. 12th LPAR. LNCS, vol. 3835, pp. 412–426. Springer (2005)

3. Beckert, B., Ulbrich, M.: Trends in Relational Program Verification. In: Princi-
pled Software Development - Essays Dedicated to Arnd Poetzsch-Heffter on the
Occasion of his 60th Birthday. pp. 41–58 (2018)

4. Fowler, M.: Refactoring: Improving the Design of Existing Code. Object Technol-
ogy Series, Addison-Wesley (Jun 1999)

5. Garrido, A., Meseguer, J.: Formal Specification and Verification of Java Refactor-
ings. In: Proc. 6th SCAM. pp. 165–174. IEEE Computer Society (2006)

6. Godlin, B., Strichman, O.: Regression Verification: Proving the Equivalence of
Similar Programs. Softw. Test., Verif. Reliab. 23(3), 241–258 (2013)

7. Kassios, I.T.: The Dynamic Frames Theory. Formal Asp. Comput. 23(3) (2011)
8. Kiefer, M., Klebanov, V., Ulbrich, M.: Relational Program Reasoning Using Com-

piler IR - Combining Static Verification and Dynamic Analysis. J. Autom. Rea-
soning 60(3), 337–363 (2018)

9. Kourie, D.G., Watson, B.W.: The Correctness-by-Construction Approach to Pro-
gramming. Springer (2012)

10. Kundu, S., Tatlock, Z., Lerner, S.: Proving Optimizations Correct Using Parame-
terized Program Equivalence. In: Proc. PLDI 2009. pp. 327–337 (2009)

11. Lahiri, S.K., Hawblitzel, C., Kawaguchi, M., Rebêlo, H.: SYMDIFF: A Language-
Agnostic Semantic Diff Tool for Imperative Programs. In: Madhusudan, P., Seshia,
S.A. (eds.) Proc. 24th CAV. LNCS, vol. 7358, pp. 712–717. Springer (2012)

12. Leroy, X.: Formal Verification of a Realistic Compiler. Communications of the
ACM 52(7), 107–115 (2009)

13. Lopes, N.P., Menendez, D., Nagarakatte, S., Regehr, J.: Practical Verification of
Peephole Optimizations with Alive. Commun. ACM 61(2), 84–91 (2018)

14. Srivastava, S., Gulwani, S., Foster, J.S.: From Program Verification to Program
Synthesis. In: Proc. 37th POPL. pp. 313–326 (2010)

15. Steinhöfel, D.: Abstract Execution: Automatically Proving Infinitely Many Pro-
grams. Ph.D. thesis, TU Darmstadt, Dept. of Computer Science, Darmstadt, Ger-
many (2020), http://tuprints.ulb.tu-darmstadt.de/8540/

16. Steinhöfel, D., Hähnle, R.: Abstract Execution. In: Proc. Third World Congress
on Formal Methods - The Next 30 Years, (FM). pp. 319–336 (2019)

17. Tan, Y.K., Myreen, M.O., Kumar, R., Fox, A., Owens, S., Norrish, M.: A New
Verified Compiler Backend for CakeML. In: Proc. 21st ICFP. ACM (2016)

http://tuprints.ulb.tu-darmstadt.de/8540/

	REFINITY to Model and Prove Program Transformation Rules

