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Abstract
The quest for feature- and family-oriented deductive verifi-
cation of software product lines resulted in several proposals.
In this paper we look at delta-oriented modeling of product
lines and combine two new ideas: first, we extend Hähnle
& Schaefer’s delta-oriented version of Liskov’s substitution
principle for behavioral subtyping to work also for overrid-
den behavior in benign cases. For this to succeed, programs
need to be in a certain normal form. The required normal
form turns out to be achievable in many cases by a set of
program transformations, whose correctness is ensured by
the recent technique of abstract execution. This is a general-
ization of symbolic execution that permits reasoning about
abstract code elements. It is needed, because code deltas con-
tain partially unknown code contexts in terms of “original”
calls. Second, we devise a modular verification procedure
for deltas based on abstract execution, representing deltas
as abstract programs calling into unknown contexts. The
result is a “delta-based” verification approach, where each
modification of a method in a code delta is verified in isola-
tion, but which overcomes the strict limitations of behavioral
subtyping and works for many practical programs. The latter
claim is substantiated with case studies and benchmarks.

CCS Concepts: • Software and its engineering→ Soft-
ware product lines; Software verification.

Keywords: Software product lines, delta-oriented program-
ming, abstract execution, deductive verification, program
transformation, behavioral subtyping
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1 Introduction
In deductive software verification [20] programs are formally
specified by contracts [33] at the granularity of methods or
procedures. Contracts are written in a specification language
based on first-order logic. Proof obligations are discharged
with one of several available verification tools. The quest to
lift deductive verification to feature- and family-oriented [39]
approaches that work for software product lines (SPLs) re-
sulted in various proposals, for example, [21, 22, 27, 41–43].
The fundamental design space of SPL verification is de-

marcated by two extremes: in the ideal scenario for feature-
oriented verification one verifies base code and family-specific
code separately for each feature. A suitable composition
mechanism then guarantees correctness of each valid vari-
ant. The main drawback is that compositionality requires
serious constraints on the admissibility of contracts and fea-
ture implementations. For example, Hähnle & Schaefer [21]
proposed an adaptation of Liskov’s Substitution Principle
(LSP) [31] in the context of delta-oriented programming [35].
Further contract composition principles are discussed by
Thüm et al. [41]. The problem with constraints on contract
admissibility is that this can impose too severe restrictions on
software design to be of practical use. On the other end of the
design space is product-based verification, where each valid
product is specified and verified in isolation. This is usually
prohibitive in cost, particularly, with respect to specifica-
tion [7]. Besides, it excludes systematic reuse, the purported
main advantage of software product lines.
The approaches cited above strike differing trade-offs,

but the fundamental insight is clear: the more localized, i.e.,
feature-oriented, a verification approach is designed to be,
the more constraining assumptions on contracts and imple-
mentations are needed. In the present paper we import two
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new ideas into the design of a fully compositional verification
approach that is nevertheless practical.
Our frame of reference is delta-oriented programming

(DOP) [35], a feature-oriented, generative implementation
principle compatible with any OO programming language.
In DOP each feature is implemented by one or more delta
modules (deltas, for short) that are applied successively to
a core variant. The choice of DOP derives from the fact
that deltas specify incremental code transformations at the
granularity of a method declaration. This matches contract-
based specification. Hence, each modification of a method
of a delta is assumed to be specified with a contract (see
Listing 8 for an example). As usual in DOP, a delta for a
method can be declared relative to a previous version of that
method and called using the keyword original in the delta’s
code.
Like [21] and some of the approaches in [41] we impose

restrictions on contracts and deltas to render their verifica-
tion compositional. The new idea we propose is to combine
these restrictions with a normal form that is enforced for the
code declared in a delta. This normal form makes it possible
to define more liberal constraints for deltas and contracts
that allow overriding of behavior and are not compositional
in the general case. We prove that the correctness of each
local contract of a core method declaration and of all its
modifications declared in a delta implies correctness of all
valid variants that result from delta application.

The obvious drawback of imposing a normal form is that
few implementations follow it. To mitigate this problem we
define a set of behavior-preserving program transformations
that can be used to achieve normal form. In our case studies
the vast majority of cases required only a small number of
transformation steps to the desired normal form. We also
discuss one instance, where some more (but also limited)
remodeling was required.

To verify correctness, two verification tasks remain: (1) For
the employed program transformation schemata one needs
to show that they preserve behavior; (2) all core method
declarations and modifications in deltas must be proven
correct relative to their contract. Both tasks involve veri-
fication of code that contains abstract segments: transfor-
mation schemata must be valid for all possible instances,
while method modifications in deltas contain calls to an un-
known original method. To handle abstract code we use a
recent verification approach called abstract execution [38],
a generalization of symbolic execution that permits reason-
ing about abstract code elements. It is implemented [36] in
the deductive verification tool KeY [2]. With abstract exe-
cution we managed to verify all proof obligations resulting
from transformation schemata and local contracts from our
case studies in a fully automated manner. The transforma-
tion schemata need to be verified only once for all instances.
From the validity of the local contracts, the correctness of
all valid variants follows by our composition theorem.

As our approach is centered around method modifications
declared in deltas, it cannot be classified purely as a feature-
or family-based verification approach [39]: Unlike the former,
a feature might be implemented in several deltas; unlike the
latter, it suffices to verify each delta in isolation once a simple
family-based analysis has checked admissibility. For this
reason we prefer the terminology delta-based verification.

The paper is structured as follows: Section 2 provides back-
ground on specification and verification of abstract programs
with abstract execution. This involves a small extension of
the JavaModeling Language, which is another (minor) contri-
bution of our paper. Section 3 gives a compact introduction to
DOP to make the paper self-contained. We also explain how
original calls are modeled with abstract execution. Section 4
rehashes the main results of the delta-oriented adaption of
LSP [21]. This constitutes the baseline for the definition of
the normal form and a liberalized composition principle
in Section 5, where also the composition theorem is stated
and proven. Section 6 presents the program transformation
schemata required to achieve normal form. Section 7 eval-
uates our approach: first its principled feasibility, second
its coverage, third its effectiveness in comparison with a
product-based approach. Section 8 discusses related work.
In Section 9 we conclude and mention future directions.

2 Specifying Abstract Programs
2.1 Abstract Execution
Abstract Execution (AE) [38] is a generalization of symbolic
execution [10, 26] that makes it possible to prove properties
of abstract programs containing placeholder symbols, repre-
senting potentially infinitely many concrete statements or
expressions. For example, we can prove that after symbol-
ically executing the abstract program “P low = 17;”, the
final value of variable low will be 17—for any initial value of
low and for any concrete statement P, as long as P completes
normally (does not throw an exception, etc.).

AE trades off automation with expressiveness. The se-
mantics of Abstract Statements (AStmts) and Abstract Ex-
pressions (AExps) is represented by abstract state changes
using dedicated symbolic execution rules. Instead of per-
forming syntactic case distinctions as done by structural
induction [10], the traditional approach to prove universal
properties of abstract programs, AE only records the be-
havior of placeholder symbols. This restriction to behavioral
properties, in connection with symbolic execution, frequently
permits fully automatic proofs.
AE goes beyond the capabilities of existing approaches

for automatically verifying abstract programs [9, 17, 32, 37].
These are confined to a specific application scenario and lim-
ited regarding expressiveness. Notably, AE supports AStmts
as well as AExps and can reason about programs contain-
ing loops. Moreover, AE allows us to impose constraints
on the behavior of the concrete statements or expressions
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represented by placeholder symbols: one can specify (i) the
locations that can be written by a placeholder (its frame),
(ii) the locations that can be read by a placeholder (its foot-
print), (iii) the condition under which instances may com-
plete abruptly (throwing an exception, breaking from a loop,
returning, etc.), and (iv) state postconditions that must hold
after executing an instance of a placeholder.

2.2 Abstract Programs, Statements, and Expressions
For simplicity we restrict ourselves to normally complet-
ing statements and expressions in this paper, and, accord-
ingly, omit to specify explicitly that abrupt completion is
excluded. Furthermore, we use a simplified syntax to specify
frames and footprints of placeholder symbols. For example,
to specify an AStmt with identifier symbol “Stmt” that may
assign at most to variables x and y, while being allowed to
access at most the initial values of variables y and z, we
write “Stmt(x, y :≈ y, z);”. For an abstract expression with
identifier symbol “expr” of type 𝑇 and the same frame and
footprint as above we write “expr𝑇 (x, y :≈ y, z)”. By con-
vention, we use upper case identifiers for AStmts, and lower
case for AExps. Both the frame (left of “:≈”) and footprint
(right of “:≈”) in such declarations may be empty.

Consider again the example “P low = 17;”. It is generally
incorrect that the final value of low will be 17 if we swap the
order of the concrete and abstract statement, since there are
instantiations of P assigning a value different from 17 to low.
But wemay swap these statements, if we restrict P such that
its instances do not assign low. The machinery introduced so
far is insufficient to accomplish this in a general manner: we
are forced to specify an AStmt with an empty frame to ensure
that low is not overwritten, and with footprint \everything,
because we do not know the actual variables or fields that
occur in the frames and footprints of the instances of P. The
first is overly restrictive, the second overly defensive. To over-
come this, we leverage the theory of dynamic frames [25]. A
dynamic frame is an abstract specification variable that eval-
uates to a set of concrete locations. Let frameP and footprintP
be dynamic frames. Then, the value of low after executing
“low = 17; P(frameP :≈ footprintP);” will be 17 if we add
the assumption low ∉ frameP . The semantics of the AStmt
P(frameP :≈ footprintP) is the set of all concrete statements
which read arbitrary locations and do not assign low.

We formally define the semantics of abstract programs.

Definition 2.1. AnAbstract Program Element (APE) is either
an AStmt or an AExp. A triple P = (locs,APEs, 𝑝abstr ) of a
set of dynamic frames locs, abstract program element decla-
rations APEs ≠ ∅ using these location sets, and a program
fragment pabstr containing exactly those APEs is called an
abstract program. Each APE declaration is either an AStmt
declaration Stmt(frame :≈ footprint) or an AExp declara-
tion expr𝑇 (frame :≈ footprint), where Stmt and expr are

identifiers, 𝑇 is a type, and frame, footprint are location lists
(program variables, fields, or dynamic frames).

A concrete program fragment 𝑝 is a legal instance of P
if it arises from substituting (in 𝑝abstr ) concrete sets of loca-
tions for all dynamic frames in locs and concrete statements
or expressions for all APEs in APEs, where (1) all APEs are
instantiated by concrete program elements respecting their
frame, footprint, and (in the case of APEs) type; (2) all APEs
with the same identifier are instantiated with the same con-
crete statement or expression. The semantics ⟦P⟧ consists
of all legal instances.

Restricting instances of APEs of the same identifier to
the same concrete program elements is crucial for using
AE to specify and prove transformation rules. For example,
we can prove that the semantics of the abstract program
“P(frame :≈ footprint); P(frame :≈ footprint);” is the same
as that of “P(frame :≈ footprint);”, whenever it holds that
frame ∩ footprint = ∅.

2.3 Specification Annotations
Methods can be equipped with preconditions, which are
assumed in correctness proofs, and postconditions, which
state the proof goal. We use the Java Modeling Language’s
(JML) [2, 30] specification comments starting with an “@”
symbol. Consider method “Unit update(Int x)” for up-
dating the balance of a bank account. To specify that only
positive updates are considered, we can add the specification
line “//@ requires x > 0;” before the method declaration.
If our goal is to prove that the field “balance” has been up-
dated accordingly after the call we write

//@ ensures balance = \old(balance) + x;

The “\old” keyword permits referring to the value loca-
tions had just before method execution. The values of ab-
stract location sets for AE can be constrained in method pre-
conditions, but also within method bodies using the keyword
ae_constraint instead of requires. To specify that two lo-
cation sets frame and footprint are disjoint, for instance, we
write “//@ ae_constraint frame ∩ footprint = ∅;”. For the
sake of readability, we use conventional mathematical opera-
tors like “∩” and not the JML equivalents like “\intersect”.

The JML reference manual [30, Sect. 12.4.2] defines an ex-
tension “\old(expr, label)” of the “\old” specifier to refer
to the value an expression expr had when the control flow
last reached the code position at label. According to the ref-
erence manual, labeled \old expressions may only be used
in assumptions and assertions within method bodies, and
only when label has been declared in the surrounding con-
text. We added support for this previously unimplemented
JML feature in the deductive verifier KeY [1]. Going beyond
the JML definition, we allow labeled \old as well in method
postconditions, whenever the given label is uniquely defined
within the annotated method’s body.
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2.4 Transformation Rules
Schematic code transformation rules can be naturally ex-
pressed as pairs of abstract programs. For instance, the Slide
Statements refactoring technique [16], which swaps two con-
secutive statements, can be expressed as “P Q ⇝ Q P”,
where P and Q are abstract statements. Using AE, we can
impose constraints on APEs ensuring that a transformation
rule is semantics-preserving for all concrete instances of the
abstract programs. In the case of Slide Statements, the seman-
tics of “x = y; y = x;” is not preserved when swapping
the two statements, because each statement writes to the
location the other one reads. Likewise, applying the refactor-
ing to “x = y; x = z;” should be forbidden, because each
statement overwrites the other one’s assignment. The cor-
rect instances of Slide Statements for normally completing
programs are modeled with our AE notation as:

/*@ ae_constraint

@ frA ∩ frB = ∅ &&

@ frA ∩ fpB = ∅ &&

@ frB ∩ fpA = ∅; */

A(frA :≈ fpA)
B(frB :≈ fpB)

⇝

/*@ ae_constraint

@ frA ∩ frB = ∅ &&

@ frA ∩ fpB = ∅ &&

@ frB ∩ fpA = ∅; */

B(frB :≈ fpB)
A(frA :≈ fpA)

The REFINITY workbench1 is based on KeY [1] and per-
mits to specify statement-level transformation rules using
the AE framework. Apart from providing editing support, it
generates suitable proof obligations for the KeY prover to en-
sure semantic equivalence of the source and target abstract
programs. For details on REFINITY and the construction of
proof obligations for correctness proofs of transformation
rules, we refer to [36].

3 Delta-Oriented Programming
Delta-oriented programming (DOP) [35] is a feature-oriented,
generative approach to the design of software product lines.
There are two major implementations: For Java [28, 44] and
for the active object language ABS [11]. Because the former
is currently being updated to recent Java versions, we use
ABS, however, it does not matter greatly, because ABS has a
Java-ish syntax and we focus on its sequential Java fragment
in this paper.
In DOP [35], a family of programs is represented by a

delta model D consisting of a base variant (core module) C
and a partially ordered set of delta modules (deltas) that can
be applied to the core to generate different variants. For
example, in the simple delta model of a product line of bank
accounts in Listing 1 the core module is called BankAccount
and consists of an equally named class. There is a single
delta module called DFee that is supposed to implement
transaction fees.

Variability is modeledwith features, abstract program char-
acteristics. Each product of an SPL is represented by a set

1https://www.key-project.org/REFINITY/

1 class BankAccount {
2 Int balance;
3 Unit update(Int x) { balance = balance + x; }
4 }
5 delta DFee {
6 modifies class BankAccount {
7 adds Int fee;
8 modifies Unit update(Int x) {
9 original(x);

10 if (x < 0) { balance = balance - fee;}
11 }
12 }
13 }
14 productline SimpleSPL {
15 features BankAccount, Fee;
16 delta DFee when Fee;
17 }

Listing 1. A small portion of SimpleSPL

of features, called feature selection or configuration. The fea-
ture model [24] of an SPL specifies which combinations of
features, i.e., which products, are legal. This is often done
as a combination of a tree-shaped feature diagram [4] and
Boolean constraints, but the latter is sufficient (diagrams
are only needed to enhance understanding). The SPL in
Listing 1 has two features BankAccount and Fee (Line 15)
with the trivial constraint that the former is mandatory and
the latter is optional (the constraint is not given in the list-
ing). Obviously, each of the products 𝑃1 = {BankAccount},
𝑃2 = {BankAccount, Fee} is legal, but 𝑃3 = {Fee} is not.

In DOP each feature is associated with one or more deltas
that are supposed to implement it (for example, Line 16). A
legal selection of a set of features (i.e., a product) triggers
activation of an associated set of deltas 𝛿1, ..., 𝛿𝑝 to be applied
to the core module, written 𝐶𝛿1 · · · 𝛿𝑝 . For example, genera-
tion of product 𝑃2 can be denoted “BankAccount DFee”. The
sequence of delta applications must respect the specified par-
tial order among the deltas (trivial in the example, because
there is just one delta). If no valid delta application order can
be found, then the requested product is invalid.

A delta can alter the core or the result of a previous delta
application by adding, removing, and modifying classes. The
internal structure of a class can be changed by adding (Line 7)
and removing fields and methods, as well as modifying
(Lines 8–11) the implementation of existing methods.

By calling original (Line 9) in the body of a method it is
possible to refer to themost recent version of themethod that
is being modified. It is important to note that this most recent
version is not uniquely determined until a product variant
and its delta application order is fixed. Therefore, in general
the number of versions of a method that a call to original
represents is exponential in the number of features. We refer
to this phenomenon as the variant explosion problem below.
As its consequence, original calls are the pivotal point that
must be considered in family-based analysis of DOP [42].
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Modeling Original Calls with Abstract Execution
A main idea behind our approach is a new method to model
original calls: we represent them as a call to an abstract
version of the modified method with an abstract frame and
partially 2 abstract footprint, i.e., an abstract program in the
sense of AE. With the AE machinery we can then specify
partially abstract constraints. We model the abstract nature
of a (void) original call with parameters p as an AS Original
with its frame and footprint. We use the syntactic sugar
original(p) to represent Original(frame :≈ footprint)
with the constraint p ∈ footprint.

4 Behavioral Subtyping
Method contracts [33] are a standard approach to specifying
the behavior of OO programs [20] that decomposes a global
specification into method-level annotations called contract:

Definition 4.1. A contract for a method m is a triple with
the notational convention (m.r, m.e, m.frame), where (1) r
is a first-order formula called precondition or requires clause;
(2) e is a first-order formula called postcondition or ensures
clause; (3) frame is a set of program locations in m, whose
value can potentially be changed during execution of m.

4.1 Liskov’s Substitution Principle for DOP
The variant explosion problem pointed out above is an ob-
vious challenge to specifying with contracts and to family-
based verification in DOP, because the contract of a method
in an original call is known only when the concrete variant is
generated. Hähnle & Schaefer [21] addressed it by adapting
behavioral subtyping [31], namely that the properties of an
object must hold for all its subtypes, to DOP. A sufficient con-
dition to ensure behavioral subtyping is commonly known
as Liskov’s Substitution Principle. In the realm of DOP it can
be conveniently expressed by ordering contracts according
to generality [21]:

Definition 4.2. Let m, m’ be methods with contracts (m.r,
m.e, m.frame), (m’.r’, m’.e’, m’.frame’), respectively, (m
= m’ permitted). The first contract is more general than the
second (the second is more specific than the first), denoted

(m.r, m.e, m.frame) ⪰ (m’.r’, m’.e’, m’.frame’)
iff the following holds:
(m.r → m’.r’) ∧ (m’.e’ → m.e) ∧ (m’.frame’ ⊆ m.frame)

Definition 4.3. Let 𝛿.m denote the code changes applied
by a delta 𝛿 to method m. We say that 𝛿.m fulfills Liskov’s
Substitution Principle (LSP) if the contract of 𝛿.m is more
specific than the contract of each previous version of m. A
delta fulfills LSP if each of its methods does.

2Because of method parameters: these can be viewed as concrete members
of the footprint without side effects. If a method has no parameters the
footprint of its original call is fully abstract.

4.2 Verification of Deltas with the LSP
To verify that a code delta 𝛿.m fulfills its contract the method
calls inside 𝛿.m are analyzed as follows. For each called
method n (if the call is via original, then n is a version of
m outside 𝛿) there are two options: n occurs in 𝛿 or it does
not. In the first case, the contract of 𝛿.n is used. Otherwise,
we search the given partial delta order for the delta, where
n was added the last time before the current call (a method
can be removed and added back) and use the contract of that
version. LSP ensures this contract is fulfilled by all possi-
ble versions of n until the current call, because subsequent
contracts of n can only become more specific.

Definition 4.4. We say that a delta 𝛿 is LSP-verified if all
methods in 𝛿 satisfy their contract, where the contract of
called methods is chosen as specified above.

For a somewhat more rigorous definition, see [21], where
the terminology verified delta instead of LSP-verified delta is
used. We use the latter for clarity. Also in [21] it was proven
that if the core of an SPL satisfies its contracts, each delta
fulfills LSP and is LSP-verified, then all product variants
satisfy their contracts. In what follows, we refer to this kind
of modular verification as Liskov-modular verification.
Let 𝑁 and𝑀 be the number of deltas and different meth-

ods, respectively. With Liskov-modular verification the num-
ber of contracts that need to be proven to verify an SPL is
polynomial in 𝑁 and 𝑀 , 𝑂 (𝑁 ∗𝑀), instead of 𝑂 (2𝑁 ∗𝑀),
needed by a product-based analysis. This reduction of com-
plexity is due to transitivity of the more-general-than order
between contracts: given a delta 𝛿 modifying method m, we
do not need to consider each previous version of m, but only
the contract of the most general one in the sense of Defini-
tion 4.4.

5 Beyond LSP
As LSP is too strict, it is often (partially) violated by real-
world programs. Any verification methodology relying on
LSP will thus reject large classes of programs even though
they are correct and well designed. Hence, it is of great in-
terest to extend this range to a larger class of programs. We
do this in three parts: (i) to ensure fully local specification
and verification of deltas, we define a normal form for pro-
grams with original calls; (ii) we define a number of “benign”
conditions that violate LSP, but adhere to natural patterns
for the design of deltas, and are still sufficient to guarantee
soundness of all variants; and (iii) we show that many delta
models satisfying neither LSP nor our more liberal condi-
tions can be naturally transformed into models satisfying
our conditions by just a few code refactorings. We describe
the two former steps in the current section and the latter in
Section 6.
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1 // refactorable to SSONF
2 modifies Unit m(Int x) {
3 if (x > 0) {
4 field1 += 1;
5 m(); // BP−method
6 original(x);
7 } else {
8 original(x);
9 field2 += 1;

10 }
11 }

1 // refactored in SSONF
2 modifies Unit m(Int x) {
3 if (x > 0) {
4 field1 += 1;
5 m(); //BP−method
6 }
7 original(x);
8 if (x<=0) {
9 field2 += 1;

10 }
11 }

Listing 2. A modifying delta & its refactored SSONF version

5.1 Normal Form
To prepare our results we introduce the concept of a behavior
preserving method.

Definition 5.1. We say that a method m is behavior preserv-
ing (a BP-method) if each method it calls is itself behavior
preserving and one of the following holds:

• All code modifications of m fulfill LSP (Definition 4.3),
• m is never modified.

We call a sequence of statements without calls to non BP-
methods behavior preserving sequence (BP-sequence). Specif-
ically, the body of a BP-method consists of a BP-sequence.

During verification BP-methods can be handled as de-
scribed in Section 4, i.e., when a BP-method m is called, its
contract can be easily retrieved: if m fulfills LSP we use Defi-
nition 4.4, otherwise m has only a single contract.

Definition 5.2. The body of a method 𝛿 .m(p) is in shallow
single original normal form3 (SSONF) if it is of the form

{S1; original(p); S2;} (1)
where S1 and S2 are BP-sequences.

By wrapping original between two sequences whose be-
havior is not affected by delta applications, we make specifi-
cation and verification local to deltas.

Some, but not all methods can be refactored to SSONF. In
Listing 2 is a method m and its refactoring to SSONF, while in
Listing 3 we show three methods that cannot be refactored to
SSONF. Methods m1 and m2 cannot be refactored in SSONF
when original and m are assumed to be not BP-methods.
Whether original is executed in m3 depends on the condition
x > 0, therefore m3 cannot be refactored to SSONF.

5.2 Add New Behavior Principle
An important limitation of LSP is that a modifying delta
cannot extend the frame of its contract, even when it assigns
newly added fields. But it is obvious that when the body of
a modifying delta is in SSONF, assignments to new fields
will not change the behavior of any previous version of the
method. We overcome this restriction with the Add New
Behavior Principle.
3SSNOF can be easily extended to cover modifications of a method m refac-
torable to {S1; T x = original(p); S2;}. We omit this for brevity.

1 modifies Unit m1() {
2 original(); // non BP
3 original(); // non BP
4 }
5
6 modifies Unit m2() {
7 original(); // non BP
8 m(); // non BP−method
9 }

1 modifies Unit m3(Int x)
2 {
3 if (x > 0) {
4 original(x);
5 } else {
6 field1 += x;
7 }
8 }

Listing 3. Modifying deltas not refactorable to SSONF

Definition 5.3. Let {f1, . . . , f𝑁 } be the fields 𝛿 adds to class
C. We say 𝛿 modifies m according to the Add New Behav-
ior Principle (ANBP) when 𝛿.m is in SSONF form (1) and
S𝑖 .frame ⊆ {f1, . . . , f𝑁 } for 𝑖 = 1, 2. We also say that 𝛿 adds
new behavior to m, that 𝛿.m satisfies the ANBP, and that the
S𝑖 add new behavior.

Since (m.r, m.e, m.frame) ⪰̸ (𝛿.m.r, 𝛿.m.e, 𝛿.m.frame)
follows from 𝛿.m.frame ⊈ m.frame, we are able to break
LSP by applying ANBP. Listing 4 shows an example of a
modifying delta satisfying the ANBP.

1 modifies C {
2 adds Int field1;
3 modifies Unit m() {
4 original();
5 field1 +=1;
6 }
7 }

Listing 4. A modifying delta satisfying the ANBP

Lemma 5.4. Let m be a method, m.r and m.e its Boolean JML
contract clauses without references to non BP-methods, and
assume 𝛿 adds new behavior to m. Let S be any sequence of
statements added by 𝛿 . Then m.r and m.e are invariants of S,
that is, if S is executed in any state satisfying m.r (m.e) and
it terminates, then m.r (m.e) holds again in the final state.

This lemma (the proof is obvious) states that no part of
an existing contract can be invalidated by adding new be-
havior, as long as at most BP-methods are referenced in it.
The restriction to non BP-methods is necessary: Assume the
contract of m1 refers to the value returned by method m2 and
𝛿 adds as new behavior to m1 an assignment to the newly
added field f before the call to original. In addition, 𝛿 modi-
fies m2 by assigning to f and the returned value depends on
the value of f. In this case, we are not able to assert that 𝛿
preserves the original behavior of m1.
In general, referring to a non BP-method in a specifica-

tion, or calling it, leads to changed behavior and impedes
compositional verification.
Using Lemma 5.4 we can easily extend the concept of

Liskov-modular verification by adding new behavior. In light
of Theorem 5.8, we refrain from giving the details.

5.3 Conjunctive Precondition Principle
Lemma 5.4 implies that new behavior added by a delta to
a method m does not affect the validity of its precondition
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m.r and postcondition m.e. If m.r is True, then we need
not be concerned about the expected behavior of m. In con-
trast, if m.r is non-trivial, we have to prove that before call-
ing m its precondition m.r holds. This is always the case
when 𝛿.m.r⇒ m.r. The authors of [41] propose an implicit
feature-oriented contract compositionmechanism called con-
junctive contract refinement. With this mechanism, contracts
are always conjunctively refined, i.e., modified by adding new
pre- and postconditions conjunctively. With the ANBP, old
contracts are preserved, but since in addition we require the
old precondition to hold, we follow the idea behind conjunc-
tive contract refinement by defining the following principle.

Definition 5.5. Let 𝛿 modify method m. We say that 𝛿 sat-
isfies the Conjunctive Precondition Principle (CPP) if its pre-
condition implies the precondition of each version of m to
which 𝛿 is applicable.

This principle can be enforced for an existing specification,
for example, by propagating preconditions along the delta
application order. By automating this procedure it would be
possible to avoid having to specify additional preconditions
by hand. This is important to lower verification effort.

5.4 Change Old Behavior Principle
The main limitation of ANBP is its built-in behavioral mono-
tonicity: the inability to override existing behavior goes
against the grain of DOP. Thus, we generalize this principle:

Definition 5.6. Let 𝛿 be a delta modifying C.m(p). We say
that 𝛿 satisfies the Change Old Behavior Principle (COBP)
when exactly only one of the following cases applies:

1. 𝛿.C.m is in SSONF {S1; original(p); S2;}, where S1
adds new behavior ;

2. 𝛿.C.m is a BP-sequence.

By requiring methods to be in SSONF, COBP enforces only
an already natural pattern for the design of deltas, namely,
“allocate and set new fields—call to original—possibly over-
ride old values and result”. This ensures that the behavior of
the call to original is not unaffected by the delta’s changes,
and permits to apply locally-verifiable effective changes on
top. Listing 5 shows an example of a modification fulfilling
COBP.

1 modifies C {
2 modifies Unit m () {
3 original();
4 field += 1;
5 }
6 }

Listing 5. Example of a modification fulfilling the COBP

The COBP might still seem restrictive, but in fact it can
be generalized to the following, fairly common situation:

{S1; if (boolExpr) {original(p)}; S2;} ,

where the execution of original is conditionedwith a Boolean
expression. When original is not executed, this is equivalent
to a BP-sequence. Provided that boolExpr does not contain
calls to non BP-methods, COBP covers the other case. For
brevity we omit formal details.

Obviously, the following fact about ANBP andCOBP holds:

Lemma 5.7. If a delta 𝛿 satisfies ANBP, then it satisfies COBP.

Hence, for correctness it suffices to focus on the COBP.
Assuming LSP and COBP (modularly combined) we can
prove, with AE, the correct behavior of each possible product
by verifying each delta in isolation. The correctness of this
family-oriented verification approach is formally stated in
the following theorem:

Theorem 5.8. Given a delta model consisting of a core𝐶 and
a set of deltas 𝐷 , assume the following holds:
(1) The body of each method m in𝐶 is a BP-sequence, and m

satisfies its contract.
(2) For all 𝛿 occuring in 𝐷 and for all methods m in 𝛿 one of

the following conditions holds:
a. m is modified by 𝛿 , it fulfills the COBP, and satisfies

its contract under the CPP.
b. m is a BP-method, is modified by 𝛿 and it fulfills the

LSP and is LSP-verified.
c. m is added by 𝛿 , its body is a BP-sequence and it satis-

fies its contract.
(3) No contract can call a non BP-method.
Then each variant that can be generated from the given

delta model satisfies its specification, i.e., each of its methods
satisfies its contract.

Proof. The proof is by induction on the length𝑘 of a sequence
of delta applications that results in a valid variant. We prove
that each such sequence results in a variant that satisfies its
specification.
The base case 𝑘 = 0 follows from assumption (1). For the

step case, let Δ = 𝛿𝑃1 · · · 𝛿𝑃𝑘 be a valid sequence of deltas
such that 𝑃 = 𝐶 Δ is the variant generated by applying Δ to𝐶 .
Assume 𝑃 satisfies its specification. Let 𝛿𝑃𝑘+1 ∈ 𝐷 be a valid
delta applicable to 𝑃 and 𝑃 ′ = 𝑃 𝛿𝑃𝑘+1 the resulting product.
Also, let m𝑖 denote the version of a method m (if existing) after
the application of 𝛿𝑃𝑖 , where 0 < 𝑖 ≤ 𝑘 and m0 = 𝐶.m. If m𝑖 is
not modified or removed by 𝛿𝑃𝑖+1 , then m𝑖+1 = m𝑖 , m𝑖+1=𝑖 for
short. We prove that each method in 𝑃 ′ satisfies its contract.
By assumption (2) we know that methods added or mod-

ified by 𝛿𝑃𝑘+1 satisfy their contracts, therefore we have to
prove that each method m𝑘+1=𝑘 in 𝑃 still satisfies its con-
tract. By assumption (3) the validity of any contract of these
methods cannot possibly be affected by the delta application.
We prove that each method m𝑘+1=𝑘 satisfies its contract

when its body is a BP-sequence as well when it is not. In
the first case, since the behavior of a BP-sequence cannot be
affected by subsequent delta application, we have that: (i) if
m𝑘+1=𝑘 = m0 then (1) holds, (ii) if m𝑘+1=𝑘 = m𝑖 , with 0 < 𝑖 ≤ 𝑘 ,
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1 //before refactoring
2 modifies Unit m(p) {
3

4 if ( p1 == 0 ) {

5 field1 = 1;

6 m1(p1); //BP−method

7 original(p);

8 field2 +=1;

9 } else {

10 field1 = 2;

11 original(p);

12 m2(p2); //BP−method

13 field2 +=2;

14 }
15 }
16

1 //after refactoring
2 modifies Unit m(p) {

3 Bool cond = p1 == 0;

4 if ( cond ) {

5 field1 = 1;

6 m1(p1); //BP−method
7 } else {

8 field1 = 2;

9 }

10 original(p);
11 if (cond) {

12 field2 +=1;

13 } else {

14 m2(p2); //BP−method

15 field2 +=2;

16 }
17 }

Listing 6. Refactoring a modification of m with parameters
p = Int p1, Int p2 (left) to normal form (right).

and m𝑖−1 does not exist, then m𝑘+1=𝑘 is added by 𝛿𝑃𝑖 and (2)c
holds; (iii) otherwise, if m𝑘+1=𝑘 = m𝑖 ≠ m𝑖−1, with 0 < 𝑖 ≤ 𝑘 ,
then it is modified by 𝛿𝑃𝑖 , and if m𝑘+1=𝑘 is a BP-method then
(2)b holds, otherwise (2)a holds. Therefore, each method
m𝑘+1=𝑘 whose body is a BP-sequence still satisfies its contract
after the application of 𝛿𝑃𝑘+1 .
We turn to method m𝑘+1=𝑘 whose body is not a BP-se-

quence, i.e., it contains a call to a non BP-method. Since
the only allowed call to a non BP-method is original, m𝑘+1=𝑘
must result from the application of a delta 𝛿𝑃𝑖 , 0 < 𝑖 ≤ 𝑘 that
calls original. This 𝛿𝑃𝑖 .m is in SSONF {S1; original(p); S2;}
and it must fulfill assumption (2)a. Because the behavior of
original and of BP-sequences S𝑖 are not affected by subse-
quent delta applications, the assumption still holds. Since
each method m𝑘+1 ≠ m𝑘 and m𝑘+1=𝑘 satisfies its respective
contract, all methods in 𝑃 ′ do. □

Invariants. Concerning object invariants, we use the same
approach as [21]: no addition, modification or deletion of
invariants can be specified in deltas, unless the invariant a
delta adds refers only to newly added fields.

6 Achieving Normal Form
In many cases, a program not in SSONF is equivalent to
a program in SSONF. For example, the program shown in
Listing 6 on the left has the same behavior as the one on
the right. Corresponding segments on the left and right are
highlighted with the same color. The crucial observation is
that both programs can be related with a series of simple
transformation steps. The correctness of these transforma-
tions is ensured by AE, which makes it possible to verify a
schematic transformation rule for all possible instances.

if ( e𝑏𝑜𝑜𝑙𝑒𝑎𝑛 (frameE :≈ footprintE) ) {

Q1(frameQ1 :≈ footprintQ1);
} else {

Q2(frameQ2 :≈ footprintQ2);
}

CSCE

−−→
/*@ ae_constraint

@ x ∉ frameQ1 && x ∉ footprintQ1 &&
@ x ∉ frameQ2 && x ∉ footprintQ2;
@*/

x = e𝑏𝑜𝑜𝑙𝑒𝑎𝑛 (frameE :≈ footprintE);
if (x) {

Q1(frameQ1 :≈ footprintQ1);
} else {

Q2(frameQ2 :≈ footprintQ2);
}

Listing 7. Formalization of rule CSCE in the AE framework

We employ the following transformation rules that are
also sufficient to transform the program in Listing 6.
1. Conditional Statement Condition Extraction (CSCE):

This rule extracts an abstract Boolean condition (in List-
ing 6 on the left in Line 4) and replaces it with a variable
(in the example cond) that captures its value and that is
not modifiable by any subsequent statements.
The formalization of rule CSCE in the AE framework of
Section 2 is given in Listing 7. For brevity, we omit the
formalization of the remaining rules.

2. Unfold If Branch Prefix: Splits the if-branch of a con-
ditional into two consecutive if-statements, distributing
their bodies.

3. Unfold Else Branch Prefix: As above, but else-branch.
4. Consolidate Duplicate Conditional Fragments Ex-

tract Prefix [15]: This rule allows us to extract the same
sequence of statements, or prefix, from the if-branch and
the else-branch of a conditional, with the constraint that
none of the extracted statements may affect the value of
the conditional expression.

5. Split Conditional Statement: Splits a conditional state-
ment in two conditional statements having complemen-
tary guards. In our example we use its inverse.

7 Case Studies
Wedemonstrate the feasibility of our approach and show that
it is expressive enough to specify existing software product
lines. Section 7.1 discusses the product line SimpleSPL that
was specifically designed to guide and validate our approach,
with a focus on the application of the presented principles.
Section 7.2 demonstrates that our approach is applicable to
non-trivial legacy software product lines using two SPLs
widely used in the literature. In Section 7.3 we perform an
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Figure 1. Feature diagram of SimpleSPL

1 delta DWithdrawnTotal when WithdrawnTotal {
2 modifies class BankAccount {
3 adds Int withdrawnTotal;
4 //@ ensures (x < 0) ==>
5 //@ (withdrawnTotal == \old(withdrawnTotal) − x);
6 modifies public Unit update(Int x) { // satisfies ANBP
7 if (x < 0) withdrawnTotal = withdrawnTotal - x;
8 original(x);
9 }

10 }
11 }

Listing 8. Delta DWithdrawnTotal

experimental evaluation against a product-based approach.
The case studies and the used KeY system can be found at
https://github.com/se-tud/GPCE21-case-studies.

7.1 SimpleSPL
Figure 1 shows the feature model of SimpleSPL. The SPL
consists of one class BankAccount, one method update (List-
ing 1), five deltas, and 18 possible products. Each delta modi-
fies method update by adding new or changing old behavior.

7.1.1 Add New Behavior Principle. In this product line,
the deltas DWithdrawnTotal (shown in Listing 8) and DLog
(omitted for brevity) satisfy the ANBP: The body of update
in DWithdrawnTotal is in SSONF and its frame is expanded
by assigning withdrawnTotal, a newly added field.

7.1.2 Change Old Behavior Principle. In Listing 9 we
show the specification of delta DFee triggered by the selec-
tion of feature Fee. Delta DFee modifies update by decreas-
ing balance by the value of fee. Variable balancemight have
been assigned in original, therefore, in the contract we need
to refer to the value it had after the call to original. The JML
extension mentioned in Section 2.3 permits to achieve this
with the label l in \old(this.balance,l) (Line 4).

Using the LSP alone [21], it would not be possible to spec-
ify the precise contracts for this modifying delta. Since the
method satisfies COBP we do not have to worry about the
contracts of previous versions referenced by original.

1 delta DFee when Fee {
2 modifies class BankAccount {
3 adds Int fee;
4 //@ ensures (x < 0) ==> (this.balance == \old(this.balance,l) − fee);
5 modifies Unit update(Int x) { // satisfies COBP
6 l: original(x);
7 if (x < 0) balance = balance - fee;
8 }
9 }
10 }

Listing 9. Delta DFee with specified contract for
modification of method update

7.2 Coverage
We continue with an investigation of the coverage of existing
product lines. Because of the scarcity of suitable case stud-
ies in ABS, we opted to remodel two existing product lines
BankAccountSPL [42] and MinePumpPL [5] in ABS using the
DOP paradigm. Originally these models were designed with
feature-oriented programming (FOP) [6, 34] in Java, whose im-
plementations are available at SPL2go [40]. Both implement
interesting behavioral variability. Only the latter required
any substantial remodeling, due to method modifications
not fulfilling COBP and LSP. This allowed us to evaluate our
approach for an SPL on which it would not be applicable
originally.

7.2.1 Remodeling. The remodeling required to address
some (non-essential for the case study) differences between
Java and ABS and, of course, to take into account the con-
straints imposed by our approach.

We opted for a plain remodeling of the Java classes as ABS
classes. Since DOP was designed to extend FOP, a straight-
forward remodeling consists of mapping the base feature to
the core and any other feature F to a delta DF: the core is the
base variant and each delta DF contains the changes to be
applied when F is selected.
Due to strong object encapsulation in ABS [23], direct

references to object fields of foreign classes are unsupported
and were remodeled in the code as well as in contracts by
calls to getter/setter methods exposed in interfaces (which
were implemented, if necessary). In DOP the granularity of a
modification is at the method level, therefore, we remodeled
modifiable final fields as access methods satisfying LSP. In
the following we describe both case studies in greater detail.

7.2.2 BankAccountSPL. BankAccountSPL [42] is a well-
known case study implementing a small system for the bank
account management. We chose it because of its similarities
to SimpleSPL, but its considerably higher complexity due to
the presence of invariants, two classes, and a larger amount
of modifiedmethods. BankAccountSPL, whose featuremodel
is shown in Figure 2, consists of six features and 24 products.
The classes are Account and Application. The former handles
withdrawal, deposit, interest, and daily limit for withdrawals.
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Figure 2. Feature diagram of BankAccountSPL

The latter may restore a daily limit and update the balance
of Account according to the given interest rate.
The behavior of the FOP version comes with JML con-

tracts, therefore, we relied on these contracts to verify the
correctness of the product line. We observe that (i) original
is the only non BP-method called, (ii) all modified methods
calling original are already in SSONF, and (iii) these methods
satisfy COBP. Hence, BankAccountSPL is fully covered by
our approach without any need of structural remodeling.
The only issues we met were the contracts of method

Application.nextYear and Application.nextDay in Delta-
Interest: the specified behavior of the former assumed that
the original call does not change the value of existing fields,
and since the only previous version of the method is empty
we removed this original call. For the latter, the problem
was related to remodeling: since we wrapped all references
to object fields with getter and setter methods, we had to
choose between over-specifying the contracts to have very
precise assignable clauses, or to use labeled original calls
and leave the additional work to the verification tool. We
opted for the second solution.

7.2.3 MinePumpPL. The MinePumpPL system [5], based
on work in the CONIC project [29], simulates a water pump
in a mining operation. If the pump is running it keeps the
mining shaft dry and safety precautions should be applied:
if the presence of methane is detected, the pump should stop
running to avoid a risk of explosion.

The featuremodel of MinePumpPL (see Figure 3) consists of
one abstract and nine concrete features and 64 valid products.
The model for the FOP version of this SPL is refactored into
an equivalent one with WaterSensor as its base feature, and
all the leaves as optional features, i.e., with seven concrete
features. According to our remodeling strategy, each delta
is triggered by the selection of two features, one leaf and
its parent: for example, DeltaHighWaterSensor is triggered
by the selection of WaterSensor and High. This system con-
sists of two classes, MinePump and Environment: the former
implements the simulation of the pump, while the latter per-
mits to know and to modify the status of the environment
in which the pump is deployed.

MinePumpPL

Command

Start Stop

MethaneSensor

Alarm Query

WaterSensor

Low High

Legend
OptionalMandatory Or

Figure 3. Feature diagram of MinePumpPL

1 class MinePump {
2 Bool pumpRunning = false;
3 Unit activatePump() { pumpRunning = True; }
4 }
5
6 delta DeltaMethaneSensorQuery {
7 modifies MinePump {
8 modifies Unit activatePump() {
9 if (!isMethaneAlarm()) original();

10 }
11 }
12 }
13
14 delta DeltaHighWaterSensor {
15 modifies class MinePump {
16 modifies Unit processEnvironment() {
17 if (!pumpRunning && isHighWaterLevel()) {
18 activatePump();
19 original();
20 } else {
21 original();
22 }
23 }
24 }
25 }

Listing 10. Code of DeltaMethaneSensorQuery, parts of
the core, and DeltaHighWaterSensor before remodeling

A contract-based specification for the behavior of the FOP
version of MinePumpPL was missing, so we added it in the
DOP version. Due to the presence of calls to non BP-methods,
additional remodeling is needed. We show one example in
Listing 10: activatePump, declared in the core at Line 3,
turns the pump on, is modified by DeltaMethaneSensor-
Query (Lines 8–10), and called by processEnvironment in
DeltaHighWaterSensor (Line 18) (this delta can be refac-
tored to obtain a single call to original). If activatePump
does not satisfy LSP then our approach cannot be applied.
Unfortunately, making activatePump do so is not a good
option, because the behavior of activatePump is too specific
and crucial for the system to admit a more general contract.
Therefore, as shown in Listing 11, we introduce a safety

check on activatePump in the core at Line 4, where a newly
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1 class MinePump {
2 //@ ensures (problemCount() == 0) ==> pumpRunning;
3 Unit activatePump() {
4 if (problemCount() == 0)
5 pumpRunning = True;
6 }
7
8 //@ ensures \result >= 0;
9 Int problemCount() { return 0; }

10 }
11
12 delta DeltaMethaneSensorQuery {
13 modifies MinePump {
14 //@ ensures \result >= 0 && isMethaneAlarm() ==> \result >= 1;
15 Int problemCount() {
16 Int count = original();
17 if (isMethaneAlarm())
18 count = count + 1;
19 return count;
20 }
21 }
22 }

Listing 11. Remodeled core and DeltaMethaneSensor-
Query with JML specification

1 class MinePump {
2 Unit timeShift() {
3 if (pumpRunning)
4 env.lowerWaterLevel();
5 if (systemActive)
6 processEnvironment();
7 }
8
9 Unit processEnvironment {}

10 }

Listing 12.Method timeShift in the core

created access method problemCount (Line 9) is called. Fur-
thermore, we replaced the modification of activatePump in
DeltaMethaneSensorQuery with the one of problemCount
(Lines 15–20). The behavior of the latter can be sufficiently
weakened using “\result >= . . . ” to make it satisfy LSP.

Listing 12 shows another problemwe encountered:method
timeShift, simulating the passing of time, never modified,
calls processEnvironment (Line 6), modified by deltas Delta-
HighWaterSensor, DeltaLowWaterSensor. Also here, gen-
eralizing the contract is not a good solution. Since process-
Enviroment has no function in the core, we decided to re-
move it, and to replace its modifications in DeltaHighWater-
Sensor and DeltaLowWaterSensor with modifications of
method timeShift fulfilling COBP, behaving identically. For
brevity we do not show the code of these changes.

Planning and performing the transformations took roughly
4 hours, while the formal specification and deductive verifi-
cation itself took approximately 14 hours.

7.3 Experimental Evaluation
To evaluate our approach experimentally, we compare it to
product-based analysis. We consider the cost of verifying
method timeShift for a subset of MinePumpPL (the most
complex problem in our case studies) consisting of three

Table 1. Cost of verification approaches

Delta Nodes
Low 5772
High 6254
Alarm 1689
Total 13715

(a) Delta-based verification

Product Nodes
Low (L) 2233
High (H) 2472
Alarm (A) 1092

L+H 2517
L+A 1860
H+A 1869

L+H+A 1883
Total 13926

(b) Product-based verification

features Low, High, Alarm, as well as seven products.We omit
the effort for verification of timeShift in the core, because
it is verified once in both approaches. Since each feature
corresponds one-to-one to a delta that modifies timeshift,
the number of methods to be verified in our approach is
three. In contrast, with the product-based approach we have
to verify seven methods.
Tables 1a and 1b break down the cost for the delta- and

product-based approach, respectively, in terms of nodes of
the resulting proof trees (all proofs are fully automatic).

In this initial scenario with a small number of (three) fea-
tures, our approach performs comparable to the product-
based approach. The product-based approach, however, does
not scale when the number of features increases, because in
the worst case the number of proofs is exponential in the
number of features; and is outperformed by our approach,
which is suitable for evolving SPLs.

To demonstrate the scaling effect, we present an evolution
scenario for MinePumpPL. We add a new delta DeltaEmer-
gency triggered by selecting a new feature Emergency. Delta
DeltaEmergency modifies method timeShift by shutting
down the pump if an emergency occurs at the end of the
shift. Selection of Emergency is not constrained, increasing
the number of products from 7 to 15, and the modification
of DeltaEmergency is always the final one applied for each
product variant. With our approach the additional effort to
verify correctness of all eight new products consists of 4598
proof nodes, because we only need to verify timeShift for
DeltaEmergency. In contrast, individually verifying each of
the eight new products requires 19107 proof nodes. Clearly,
only very few features are needed to outperform the product-
based approach. In fact, with four features, the total amount
of proof nodes is 18313 and 33033 for the delta- and product-
based approach, respectively.

8 Related Work
Composition. In [42] a family-based approach is presented
that composes specification and implementation of all vari-
ants into a metaproduct. Its monolithic nature requires the
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metaproduct to be recreated and reverified after each change.
Composition of partial proofs for features and deltas into
proofs for all products is proposed in [12–14, 18, 43].

Thüm et al. [41] present a set of mechanisms to define and
compose contracts for feature-oriented method refinements.
The principles we introduced share aspects with some of
these mechanisms. As noted in Section 5, the Add New Be-
havior Principle combined with the Conjunctive Precondition
Principle follows the same idea as conjunctive contract refine-
ment: Modifications that add new behavior ensure both the
old and new postcondition, but must require both the old and
new precondition. Also, the behavior specified in a contract
of a modification satisfying the Change Old Behavior Princi-
ple (partially) overrides previous behavior, similar to their
contract overriding. The decisive difference to our proposal is
that we combine the contract composition principles with a
normal form for method modification in deltas. This enables
the composition Theorem 5.8 despite contract overriding.

Abstract Contracts. Knüppel et al. [27] propose FEFALU-
TION, a feature-family-based algorithm for the verification
of evolving product lines. They aim to reduce the overall ver-
ification cost by using pure abstract contracts [8, 22] to verify
features and their interaction. During a feature-based phase,
using abstract contracts, FEFALUTION generates fully pre-
cise behavioral specifications for methods without a unique
behavior in terms of partial proofs for the correctness of the
contracts of these methods. During a second, family-based
phase, a meta product representing the full product family is
generated and it is used by FEFALUTION when it attempts
to complete all partial proofs.
Our approach neither has a feature- nor a family-based

phase. Instead, the main tasks are to check whether the re-
quirements of Theorem 5.8 are satisfied and then to verify
each core method and each delta modification in isolation.
The approach of Knüppel et al. [27] does not limit the form
of the refinements and does not require to satisfy any re-
strictive principle, however, the generality of fully abstract
contracts leads to inefficiencies during construction of the
partial proofs and when constructing the full proofs.

Abstract Execution. Abstract Execution has been applied
in a number of different contexts: (i) Deriving preconditions
for the safe application of refactoring rules [38], (ii) ana-
lyzing the cost impact of program transformation rules [3],
(iii) enabling of code parallelization [19], (iv) “Correct-by–
Construction” program development [45], and (v) the cor-
rectness of rule-based compilation [37]. The application of
AE to the modular verification of software product lines has,
to the best of our knowledge, not been studied before.

9 Discussion and Future Work
The main innovative aspect of our approach is to enable
liberal contract composition principles by imposing SSONF

on method modifications in deltas. Thereby, we render the
specification contracts and, hence, the verification local (The-
orem 5.8). This has important consequences: first, it makes
it easier to write specifications, because different versions
of a method can be specified independently of each other,
thus alleviating the specification bottleneck. Second, one can
create more precise specifications than under an LSP-regime.
Third, and most important, it is sufficient to verify all core
and delta contracts locally, after checking that the COBP
conditions apply. For this reason, we call our approach delta-
based. In particular, one does not need to actually generate
any variant to verify its correctness.

The necessity of a normal form potentially is also the main
drawback of our approach, because it limits the code design
space. We argue that in practice the limitation is not very
severe: first, the restriction embodied in the COBP (Defini-
tion 5.6) is quite natural for the design of modifying deltas
and follows the pattern “allocate and set new fields—call to
original—possibly override old values and result”. Complica-
tions arise, when the call to original is not shallow. But this
is not a show-stopper, because we can use program transfor-
mation to generate behaviorally equivalent code in SSONF
in most cases. We did not encounter any natural example
that would have excluded SSONF.

Of course, code transformation requires effort and exper-
tise and, obviously, it deviates from the original code. The
latter we deem unproblematic: The transformed code is only
required for verification, because the original code is behav-
iorally equivalent. The former issue clearly constitutes an
opportunity for more far-reaching user support and automa-
tion. For example, it should be possible to identify code trans-
formation patterns that systematically bring original calls to
the top-level (“shallow”) and move overriding assignments
to a permitted position. This is a topic for future work.
We stress that our whole approach hinges on a recent

innovation in static program verification: abstract execution.
It allows us not only to prove behavioral equivalence of
the transformation schemata, but it is instrumental to prove
correctness of a delta modification without the need to know
the concrete instance of original, but merely by relying on the
constraints on its dynamic frame.
The AE specification language and implementation sup-

ports abstract symbols that can be instantiated to abruptly
terminating code. To keep the presentation simple we did
not use this. It would be technical, but conceptually straight-
forward, to integrate abrupt termination into our approach.

For the reasons given in Section 3, we based our account
on the ABS language. As soon as the overhaul of DOP for Java
is completed, it would make sense to integrate our approach
into that tool chain.
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