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Abstract. A program containing placeholders for unspecified statements
or expressions is called an abstract (or schematic) program. Placeholder
symbols occur naturally in program transformation rules, as used in
refactoring, compilation, optimization, or parallelization. We present a
generalization of automated cost analysis that can handle abstract pro-
grams and, hence, can analyze the impact on the cost of program trans-
formations. This kind of relational property requires provably precise
cost bounds which are not always produced by cost analysis. There-
fore, we certify by deductive verification that the inferred abstract cost
bounds are correct and sufficiently precise. It is the first approach solving
this problem. Both, abstract cost analysis and certification, are based on
quantitative abstract execution (QAE) which in turn is a variation of
abstract execution, a recently developed symbolic execution technique
for abstract programs. To realize QAE the new concept of a cost invari-
ant is introduced. QAE is implemented and runs fully automatically on
a benchmark set consisting of representative optimization rules.

1 Introduction

We present a generalization of automated cost analysis that can handle pro-
grams containing placeholders for unspecified statements. Consider the program
Q ≡ “i =0; while (i < t) {P; i ++;}”, where P is any statement not modifying
i or t. We call P an abstract statement ; a program like Q containing abstract
statements is called abstract program. The (exact or upper bound) cost of execut-
ing P is described by a function acP(x) depending on the variables x occurring
in P. We call this function the abstract cost of P. Assuming that executing any
statement has unit cost and that t ≥ 0, one can compute the (abstract) cost of
Q as 2 + t · (acP(x) + 2) depending on acP and t. For any concrete instance of P,
we can derive its concrete cost as usual and then obtain the concrete cost of Q
simply by instantiating acP. In this paper, we define and implement an abstract
cost analysis to infer abstract cost bounds. Our implementation consists of an
automatic abstract cost analysis tool and an automatic certifier for the correct-
ness of inferred abstract bounds. Both steps are performed with an approach
called Quantitative Abstract Execution (QAE).

Fine, but what is this good for? Abstract programs occur in program trans-
formation rules used in compilation, optimization, parallelization, refactoring,
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etc.: Transformations are specified as rules over program schemata which are
nothing but abstract programs. If we can perform cost analysis of abstract pro-
grams, we can analyze the cost effect of program transformations. Our approach
is the first method to analyze the cost impact of program transformations.

Automated Cost Analysis. Cost analysis occupies an interesting middle ground
between termination checking and full functional verification in the static pro-
gram analysis portfolio. The main problem in functional verification is that one
has to come up with a functional specification of the intended behavior, as well
as with auxiliary specifications including loop invariants and contracts [21]. In
contrast, termination is a generic property and it is sufficient to come up with
a suitable term order or ranking function [6]. For many programs, termination
analysis is vastly easier to automate than verification.1

Computation cost is not a generic property, but it is usually schematic: One
fixes a class of cost functions (for example, polynomial) that can be handled.
A cost analysis then must come up with parameters (degree, coefficients) that
constitute a valid bound (lower, upper, exact) for all inputs of a given program
with respect to a cost model (# of instructions, allocated memory, etc.). If this
is performed bottom up with respect to a program’s call graph, it is possible to
infer a cost bound for the top-level function of a program. Such a cost expression
is often symbolic, because it depends on the program’s input parameters.

A central technique for inferring symbolic cost of a piece of code with high
precision is symbolic execution (SE) [9, 25]. The main difficulty is to render SE
of loops with symbolic bounds finite. This is achieved with loop invariants that
generalize the behavior of a loop body: an invariant is valid at the loop head after
arbitrarily many iterations. To infer sufficiently strong invariants automatically
is generally an unsolved problem in functional verification, but much easier in the
context of cost analysis, because invariants do not need to characterize functional
behavior: it suffices that they permit to infer schematic cost expressions.

Abstract Execution. To infer the cost of program transformation schemata re-
quires the capability of analyzing abstract programs. This is not possible with
standard SE, because abstract statements have no operational semantics. One
way to reason about abstract programs is to perform structural induction over
the syntactic definition of statements and expressions whenever an abstract sym-
bol is encountered. Structural induction is done in interactive theorem prov-
ing [7, 31] to verify, e.g., compilers. It is labor-intensive and not automatic. In-
stead, here we perform cost analysis of abstract programs via a recent generaliza-
tion of SE called abstract execution (AE) [37,38]. The idea of AE is, quite simply,
to symbolically execute a program containing abstract placeholder symbols for
expressions and statements, just as if it were a concrete program. It might seem

1 In theory, of course, proving termination is as difficult as functional verification.
It is hard to imagine, for example, to find a termination argument for the Collatz
function without a deep understanding of what it does. But automated termination
checking works very well for many programs in practice.
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counterintuitive that this is possible: after all, nothing is known about an ab-
stract symbol. But this is not quite true: one can equip an abstract symbol with
an abstract description of the behavior of its instances: a set of memory loca-
tions its behavior may depend on, commonly called footprint and a (possibly
different) set of memory locations it can change, commonly called frame [21].

Cost Invariants. In automated cost analysis, one infers cost bounds often from
loop invariants, ranking functions, and size relations computed during SE [3,11,
16, 40]. For abstract programs, we need a more general concept, namely a loop
invariant expressing a valid abstract cost bound at the beginning of any iteration
(e.g., 2 + i ∗ (acP(x) + 2) for the program Q above). We call this a cost invariant.
This is an important technical innovation of this paper, increasing the modularity
of cost analysis, because each loop can be verified and certified separately.

Relational Cost Analysis. AE allows specifying and verifying relational program
properties [37], because one can express rule schemata. This extends to QAE
and makes it possible, for the first time, to infer and to prove (automatically!),
for example, the impact of program transformation on performance.

Certification. Cost annotations inferred by abstract cost analysis, i.e., cost in-
variants and abstract cost bounds, are automatically certified by a deductive ver-
ification system, extending the approach reported in [4] to abstract cost and ab-
stract programs. This is possible because the specification (i.e., the cost bound)
and the loop (cost) invariants are inferred by the cost analyzer—the verification
system does not need to generate them.

To argue correctness of an abstract cost analysis is complex, because it must
be valid for an infinite set of concrete programs. For this reason alone, it is
useful to certify the abstract cost inferred for a given abstract program: during
development of the abstract cost analysis reported here, several errors in abstract
cost computation were detected—analysis of the failed verification attempt gave
immediate feedback on the cause. We built a test suite of problems so that any
change in the cost analyzer can be validated in the future.

Certification is crucial for the correctness of quantitative relational prop-
erties: The inferred cost invariants might not be precise enough to establish,
e.g., that a program transformation does not increase cost for any possible pro-
gram instance and run. This is only established at the certification stage, where
relational properties are formally verified. A relational setting requires provably
precise cost bounds. This feature is not offered by existing cost analysis methods.

2 QAE by Example

We introduce our approach and terminology informally by means of a motivat-
ing example: Code Motion [1] is a compiler optimization technique moving a
statement not affected by a loop from the beginning of the loop body to before
the loop. This code transformation should preserve behavior provided the loop
is executed at least once, but can be expected to improve computation effort,
i.e. quantitative properties of the program, such as execution time and memory
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int i = 0;
//@ loop invariant i ≥ 0 && i ≤ t;
//@ cost invariant

i · (acP (t,w) + acQ (t, z) + 2) ;
//@ decreases t− i;
while (i < t) {

//@ assignable x;
//@ accessible t, w;
//@ cost footprint t, w;
\abstract statement P;
//@ assignable y;
//@ accessible i , t , y, z;
//@ cost footprint t, z;
\abstract statement Q;
i ++;

}
//@ assert \cost == 2 +

t · (acP (t,w) + acQ (t, z) + 2) ;

Program Before

int i = 0;
//@ assignable x;
//@ accessible t, w;
//@ cost footprint t, w;
\abstract statement P;
//@ loop invariant i ≥ 0 && i ≤ t;
//@ cost invariant

i · (acQ (t, z) + 2) ;
//@ decreases t− i;
while (i < t) {

//@ assignable y;
//@ accessible i , t , y, z;
//@ cost footprint t, z;
\abstract statement Q;
i ++;

}
//@ assert \cost == 2 +

acP (t,w) + t · (acQ (t, z) + 2) ;

Program After

Inputs: t, w, x, y, z Precondition: t > 0 Postcondition: \cost 1 ≥ \cost 2

Preconditions and Postconditions

Fig. 1: Motivating example on relational quantitative properties.

consumption: The moved code block is executed just once in the transformed
context, leading to less instructions (less energy consumed) and, in case it allo-
cates memory, less memory usage. In the following we subsume any quantitative
aspect of a program under the term cost expressed in an unspecified cost model
with the understanding that it can be instantiated to specific cost measures, such
as number of instructions, number of allocated bytes, energy consumed, etc.

To formalize code motion as a transformation rule, we describe in- and out-
put of the transformation schematically. Fig. 1 depicts such a schema in a lan-
guage based on Java. An Abstract Statement (AS) with identifier Id , declared
as “\abstract statement Id ;”, represents an arbitrary concrete statement. It is
obviously unsafe to extract arbitrary, possibly non-invariant, code blocks from
loops. For this reason, the AS P in question has a specification restricting the
allowed behavior of its instances. For compatibility with Java we base our spec-
ification language on the Java Modeling Language (JML) [27]. Specifications are
attached to code via structured comments that are marked as JML by an “@”
symbol. JML keyword “assignable” defines the memory locations that may oc-
cur in the frame of an AS; similarly, “accessible” restricts the footprint. Fig. 1
contains further keywords explained below.

Input to QAE is the abstract program to analyze, including annotations
(highlighted in light gray in Fig. 1) that express restrictions on the permitted
instances of ASs. In addition to the frame and footprint, the cost footprint of an
AS, denoted with the keyword “cost footprint”, is a subset of its footprint listing
locations the cost expressions in AS instances may depend on. In Fig. 1, the cost
footprint of AS Q excludes accessible variables i and y. Annotations highlighted
in dark gray are automatically inferred by abstract cost analysis and are input
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for the certifier. As usual, loop invariants (keyword “loop invariant”) are needed
to describe the behavior of loops with symbolic bounds. The loop invariant in
Fig. 1 allows inferring the final value t of loop counter i after loop termination.
To prove termination, the loop variant (keyword “decreases”) is inferred.

So far, this is standard automated cost analysis [3]. The ability to infer
automatically the remaining annotations represents our main contribution: Each
AS P has an associated abstract cost function parametric in the locations of its
footprint, represented by an abstract cost symbol acP. The symbol acp (t,w) in
the “assert” statement in Fig. 1 can be instantiated with any concrete function
parametric in t, w being a valid cost bound for the instance of P. For example,
for the instantiation “P ≡ x=t+1;” the constant function acP (t,w) = 1 is the
correct exact cost, while acP (t,w) = t with t ≥ 1 is a correct upper bound cost.

As pointed out in Sect. 1 we require cost invariants to capture the cost of each
loop iteration. They are declared by the keyword “cost invariant”. To generate
them, it is necessary to infer the cost growth of abstract programs that bounds
the number of loop iterations executed so far. In Sect. 4 we describe automated
inference of cost invariants including the generation of cost growth for all loops.
Our technique is compositional and also works in the presence of nested loops.

The QAE framework can express and prove quantitative relational properties.
The assertions in the last lines in Fig. 1 use the expression \cost referring to the
total accumulated cost of the program, i.e., the quantitative postcondition. We
support quantitative relational postconditions such as \cost 1 ≥ \cost 2, where
\cost 1, \cost 2 refer to the total cost of the original (on the left) and trans-
formed (on the right) program, respectively. To prove relational properties, one
must be able to deduce exact cost invariants for loops such that the comparison
of the invariants allows concluding that the programs from which the invariants
are obtained fulfill the proven relational property. Otherwise, over-approximation
introduced by cost analysis could make the relation for the postconditions hold,
while the relational property does not necessarily hold for the programs.

To obtain a formal account of QAE with correctness guarantees we require a
mathematically rigorous semantic foundation of abstract cost. This is provided
in the following section.

3 (Quantitative) Abstract Execution

Abstract Execution [37, 38] extends symbolic execution by permitting abstract
statements to occur in programs. Thus AE reasons about an infinite set of
concrete programs. An abstract program contains at least one AS. The semantics
of an AS is given by the set of concrete programs it represents, its set of legal
instances. To simplify presentation, we only consider normally completing Java
code as instances: an instance may not throw an exception, break from a loop,
etc. Each AS has an identifier and a specification consisting of its frame and
footprint. Semantically, instances of an AS with identifier P may at most write
to memory locations specified in P’s frame and may only read the values of
locations in its footprint. All occurrences of an AS with the same identifier
symbol have the same legal instances (possibly modulo renaming of variables,
if variable names in frame and footprint specifications differ). For example, by
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//@ assignable x,y;
//@ accessible y, z;
\abstract statement P;

we declare an AS with identifier “P”, which can be instantiated by programs
that write at most to variables x and y, while only depending on variables y
and z. The program “x=y; y=17;” is a legal instance of it, but not “x=y; y=w;”,
which accesses the value of variable w not contained in the footprint.

We use the shorthand P(x, y :≈ y, z) for the AS declaration above. The left-
hand side of “:≈” is the frame, the right-hand side the footprint. Abstract pro-
grams allow expressing a second-order property such as “all programs assigning
at most x, y while reading at most y, z leave the value of i unchanged”. In Hoare
triple format (where i0 is a fresh constant not occurring in P):

{i .= i0}P(x, y :≈ y, z); {i .= i0} (∗)

3.1 Abstract Execution with Abstract Cost

We extend the AE framework [37,38] to QAE by adding cost specifications that
extend the specification of an AS with an annotated cost expression. An abstract
cost expression is a function whose value may depend on any memory location in
the footprint of the AS it specifies. This location set is called the cost footprint,
specified via the cost footprint keyword (see Fig. 1), and must be a subset of the
footprint of the specified AS. The cost footprint for the program in (∗) might be
declared as “{z}”. It implicitly declares the abstract function acP (z ) that could
be instantiated to, say, quadratic cost “z2”.

Definition 1 (Abstract Program). A pair P = (abstrStmts, pabstr ) of a set
of AS declarations abstrStmts 6= ∅ and a program fragment pabstr containing
exactly those ASs is called abstract program. Each AS declaration in abstrStmts
is a pair (P(frame :≈ footprint), acP (costFootprint)), where P is an identifier;
frame, footprint, and costFootprint ⊆ footprint are location sets.

A concrete program fragment p is a legal instance of P if it arises from sub-
stituting concrete cost functions for all acP in abstrStmts, and concrete state-
ments for all P in abstrStmts, where (i) all ASs are instantiated legally, i.e., by
statements respecting their frame, footprint, and cost function, and (ii) all ASs
with the same identifier are instantiated with the same concrete program. The
semantics JPK consists of all its legal instances.

The abstract program consisting of only AS P in (∗) with cost footprint “{z}”
is formally defined as:

(
{(P(x, y :≈ y, z), acP (z))} , P;

)
. The program “P0 ≡

i =0; while (i<z) {x = z; i ++;}” with cost function “acP (z) = 3 · z + 2” is a
legal instance: it respects frame, footprint, and cost footprint, as well as the cost
function, that (assuming z ≥ 0) can be obtained by static cost analysis of P0.

By encoding the semantics of abstract programs in a program logic [38, Sect.
4.2] one can statically verify whether an instance is legal. It may require auxiliary
specifications (invariants, contracts) of the concrete code. The property is unde-
cidable, but can be proven automatically in many cases, see [38] for a discussion.
A first implementation of such a check is part of the REFINITY tool (see [36],
also https://www.key-project.org/REFINITY/).

https://www.key-project.org/REFINITY/
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3.2 Cost of Abstract Programs

Finitely executing a concrete program p starting in a state s0 = (p, σ0) with an
initial assignment σ0 of p’s program variables results in a finite trace of the form
t ≡ s0

c1−→ . . .
cn−→ sn. Each state si = (pi, σi) consists of a program counter pi

(the remaining program to execute) and a store σi (the current variable assign-

ment); each transition si
ci+1−−−→ si+1 updates si to si+1 according to the effect of

executing command ci+1 defined in the semantics of the programming language.
A complete trace corresponds to a terminating execution, i.e., sn = (ε, σn), where
ε is the empty program and σn the resulting final variable assignment.

The cost of a program can be computed based on execution traces. To al-
low arbitrary quantitative properties, we work on a generic cost model M that
assigns cost values to programming language instructions. We will compute the
cost of a trace t, denoted M(t), by summing up the costs of the executed in-
structions. A straightforward measure is the number of executed instructions
Minstr: In this cost model, instructions like “x=1;”, the evaluation of the loop
guard, etc., all are assigned cost 1. For example, the cost of the complete trace
of “while (i>0) i−−;” when started with an initial store assigning the value 3
to i is 7, because “i−−;” is executed three times and the guard is evaluated four
times. This can be generalized to symbolic execution: Executing the same pro-
gram with a symbolic store assigning to i a symbolic initial value i0 ≥ 0 produces
traces of cost 2 · i0 + 1. The cost of abstract programs, i.e., the generalization to
QAE, is defined similarly: By generalizing not merely over all initial stores, but
also over all concrete instances of the abstract program.

Definition 2 (Abstract Program Cost). Let M be a cost model. Let an
integer-valued expression cP consist of scalar constants, program variables, and
abstract cost symbols applied to constants and variables. Expression cP is the
cost of an abstract program P w.r.t.M if for all concrete stores σ and instances
p ∈ JPK such that p terminates with a complete trace t of cost M(t) when
executed in σ, cP evaluates to M(t) when interpreting variables according to σ,
and abstract cost functions according to the instantiation step leading to p. The
instance of cP using the concrete store σ is denoted cP(σ).

Example 1. We test the cost assertion in the last lines of the left program in
Fig. 1 by computing the cost of a trace obtained from a fixed initial store and
instances of P, Q. We use the cost modelMinstr and an initial store that assigns
2 to t and 0 to all other variables. We instantiate P with “x=2∗t;” and Q with
“y=i; y++;”. Consequently, the abstract cost functions acP (t,w) and acQ (t, z)
are instantiated with 1 and 2, respectively. Evaluating the postulated abstract
program cost 2 + t · (2 + acP (t,w) + acQ (t, z)) for the concrete store and AS
instantiations results in 2+2 ·(2+1+2) = 12. Consequently, the execution trace
should contain 12 transitions, which is the case.

3.3 Proving Quantitative Properties with QAE

There are two ways to realize QAE on top of the existing functional verification
layer provided by the AE framework [37, 38]: (i) provide a “cost” extension
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to the program logic and calculus underlying AE; (ii) translate non-functional
(cost) properties to functional ones. We opt for the second, as it is less prone to
introduce soundness issues stemming from the addition of new concepts to the
existing framework. It is also faster to realize and allows early testing.

The translation consists of three elements: (a) A global “ghost” variable
“cost” (representing keyword “\cost”) for tracking accumulated cost; (b) explicit
encoding of a chosen cost model by suitable ghost setter methods that update this
variable; (c) functional loop invariants and method postconditions expressing
cost invariants and cost postconditions.

Regarding item (c), we support three kinds of cost specification. These are,
descending in the order of their strength: exact, upper bound, and asymptotic
cost. At the analysis stage, it is usually impossible to determine the best match.
For this reason, there is merely one cost invariant keyword, not three. However,
when translating cost to functional properties, a decision has to be made. A
natural strategy is to start with the strongest kind of specification, then proceed
towards the weaker ones when a proof fails.

An exact cost invariant has the shape “cost == expr”, an upper bound
on the invariant cost is specified by “cost <= expr”; asymptotic cost is ex-
pressed by the idiom “asymptotic(cost) <= asymptotic(expr)”. The function
“asymptotic” abstracts from constant symbols in the argument. For example,
the (exact) cost postcondition of the abstract program on the right in Fig. 1 is:

cost == 2 + acP (t,w) + t · (acQ (t, z) + 2) (†)
Asymptotic cost would be expressed as asymptotic(cost) <= asymptotic(2 +
acP (t,w) + t · (acQ (t, z) + 2)) where the right-hand side of the equation is equiv-
alent to asymptotic(acP (t,w) + t · (acQ (t, z))).

Listing 2 shows the result of translating the cost invariant in Fig. 1 to a
functional loop invariant (highlighted lines), using cost model Minstr in ghost
setters and postconditions of AS (“ensures” clauses). ASs P, Q must include
the ghost variable “cost” in their frame, because they update its value. The
keyword \before in the postcondition of an AS refers to the value a variable
had just before executing the AS. In loops we use “inner” cost variables “iCost”
tracking the cost inside the loop. When the loop terminates, we add the final
value of “iCost” to “cost”. After every evaluation of the guard of the loop, the
cost is incremented accordingly. Using the translation in Listing 2 of the inferred
annotations in Fig. 1, the AE system proves cost postcondition (†) automatically.

Apart from the translation of inferred quantitative annotations to functional
AE specifications, we implemented the axiomatization of the asymptotic function
and extended the AE system’s proof script language. This made it possible to
define a highly automated proof strategy for non-linear arithmetic problems
generated by some cost analysis benchmarks.

4 Abstract Cost Analysis

Recall from Sect. 2 that for automatic cost certification we need to infer anno-
tations for abstract cost invariants and cost postconditions. To achieve this, we
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1 //@ ghost int cost = 0;
2 int i = 0;
3 //@ set cost = cost + 1;
4

5 //@ assignable x, cost ;
6 //@ accessible t, w;
7 //@ ensures cost == \before(cost)
8 //@ + acP (t,w);
9 \abstract statement P;

10

11 //@ ghost int iCost = 0;
12 //@ loop invariant i ≥ 0 && i ≤ t
13 //@ && iCost == i · (acQ (t, z) + 2) ;

13 //@ decreases t− i;
14 while (i < t) {
15 //@ set iCost = iCost + 1;
16 //@ assignable y, cost ;
17 //@ accessible i , t , y, z;
18 //@ ensures cost ==
19 //@ \before(cost) + acQ (t, z);
20 \abstract statement Q;
21 i ++;
22 //@ set iCost = iCost + 1;
23 }
24 //@ set cost = cost + 1;
25 //@ set cost = cost + iCost;

Listing 2: Translation of cost model and cost invariants to AE.

leverage a cost analysis framework for concrete programs to the abstract setting.
The presentation is structured as follows: Sect. 4.1 defines the notion of an ab-
stract cost relation system (ACRS) used in cost analysis for the abstract setting.
Sect. 4.2 details how to generate automatically inductive cost invariants for ab-
stract programs from ACRSs. Sect. 4.3 tells how to generate cost postconditions
used to prove relational properties and required to handle nested loops.

4.1 Inference of Abstract Cost Relations

There are two main cost analysis approaches: those using recurrence equations
in the style of Wegbreit [39], and those based on type systems [14, 24]. Our
formalization is based on the first kind, but the main ideas for extending the
framework to abstract programs would be also applicable to the second. The key
issue when extending a recurrences-based framework to the abstract setting is
the notion of abstract cost relation for loops which generalizes the concept of cost
recurrence equations for a loop to an abstract setting. We start with notation
for loops and technical details on assumed size relations.

while (G) {
//@ accessible r1,1, . . . , r1,hr1

//@ assignable w1,1, . . . , w1,hw1

//@ cost footprint c1,1, . . . , c1,hc1

\abstract statement A1;
non abstract statement N1;
...
}

Loops. In our formalization we consider
while-loops containing n abstract state-
ments and m non-abstract statements.
Non-abstract statements include any
concrete instruction of the target lan-
guage (arithmetic instructions, condi-
tionals, method calls, . . . ). We assume
loops L have the general outline dis-
played on the right. Each abstract statement has a frame specification, abstract
and non-abstract statements may appear in any order, either might be empty.

Size relations. We assume that for each loop sets of size constraints have been
computed. These sets capture the size relation among the variables in the loop
upon exit (called base case, denoted ϕB), and when moving from one iteration to
the next (denoted ϕI). ASs are ignored by the size analysis. While this would be
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unsound in general, it will be correct under the requirements we impose in Def. 4
and with the handling of ASs in Def. 3. Size relations are available from any cost
analyzer by means of a static analysis [13] that records the effect of concrete
program statements on variables and propagates it through each loop iteration.
In our examples, since we work on integer data, size analysis corresponds to a
value analysis [10] tracking the value of the integer variables.2

Example 2. The size relations for the loop on the left in Fig. 1 are ϕB = {i ≥ t}
and ϕI = {i < t, i′ = i + 1}. ϕB is inferred from the loop guard and ϕI from the
guard and the increment of i (primed variables refer to the value of the variable
after the loop execution).

Based on pre-computed size relations, we define the cost of executing a loop by
means of an abstract cost relation system (ACRS). This is a set of cost equations
characterizing the abstract cost of executing a loop for any input with respect
to a given cost model M. Cost equations consist of a cost expression governed
by size constraints containing applicability conditions for the equation (like i < t
in ϕI above) and size relations between loop variables (like i′ = i + 1 in ϕI).

Definition 3 (Abstract Cost Relation System). Let L be a loop as above
with n abstract and m non-abstract statements. Let x be the set of variables
accessed in L. Let ϕI , ϕB be sound size relations for L, and M a cost model.
The ACRS for L is defined as the following set of cost equations:

C(x) = CB , ϕB

C(x) =
∑n

j=1 acj
(
cj,1, . . . , cj,hcj

)
+
∑m

i=1 CNi + C(x′), ϕI

where:

(1) CB ≥ 0 is the cost of exiting the loop (executing the base case) w.r.t. M.
(2) Each acj (·) ≥ 0 represents the abstract cost for the abstract statement Aj

in L w.r.t. to M. Each acj is parameterized with the variables in the cost
footprint of the corresponding Aj, as it may depend on any of them.

(3) Each CNi ≥ 0 is the cost of the non-abstract statement Ni w.r.t. to M.
(4) C is a recursive call.
(5) x′ are variables x when renamed after executing the loop.
(6) The assignable variables wj,∗ in the acj get an unknown value in x′ (denoted

with “ ” in the examples below).

Ignoring the abstract statements, one can apply a complete algorithm for cost re-
lation systems [6] to an ACRS to obtain automatically a linear3 ranking function
f for loop L: f is a linear, non-negative function over x that decreases strictly
at every loop iteration. Function f yields directly the “//@ decreases f ;” anno-
tation required for QAE.

As in Sect. 3, the definition of ACRS assumes a generic cost model M and
uses C to refer in a generic way to cost according to M. For example, to infer
the number of executed steps, C is set to 1 per instruction, while for memory
usage C records the amount of memory allocated by an instruction.

2 For complex data structures, one would need heap analyses [35] to infer size relations.
3 There exist (more expensive) algorithms to obtain also polynomial ranking func-

tions [5] but for the sake of efficiency we are not using them in our system.
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General Case of ACRS. The definition of ACRS was simplified for presenta-
tion. The following generalizations, not requiring any new concept, are possible:
(1) We assume an ACRS for a loop has only two equations, one for the base case
(the guard G does not hold) and one for the iterative case (G holds). In general,
there might be more than one equation for the base case, e.g., if the guard in-
volves multiple conditions and the cost varies depending on the condition that
holds on the exit. Similarly, there might be multiple equations in the iterative
case, e.g., if the loop body contains conditional statements and each iteration
has different cost depending on the taken branch. This issue is orthogonal to
the extension to abstract cost. (2) A loop might contain method calls that in
turn contain ASs. In absence of recursion, such calls can be inlined. For recur-
sive methods, it is possible to compute the call graph and solve the equations
in reverse topological order such that the abstract cost of the (inner) method
calls is obtained first and then inserted into the surrounding equations. (3) The
cost of code fragments not part of any loop (before, after, and in between loops)
is defined as well by abstract cost equations accumulating the cost of all in-
structions these fragments include, just as for concrete programs. This aspect
does not require changes to the framework for concrete programs, so we do not
formalize it, but just illustrate it in the next example.

Example 3. The ACRSs of the programs in Fig. 1 are (left program above line,
right program below):

Cbefore(t, x,w, y, z) = cbefore + Cw0(i, t, x,w, y, z), {i = 0}
Cw0(i, t, x,w, y, z) = cBw0

, {i ≥ t}
Cw0(i, t, x,w, y, z) = cw0 + acP (t,w) + acQ (t, z) + Cw0(i′, t, ,w, , z), {i′ = i + 1, i < t}
Cafter(t, x,w, y, z) = cafter + acP (t,w) + Cw1(i, t, ,w, y, z), {i = 0}
Cw1(i, t, x,w, y, z) = cBw1

, {i ≥ t}
Cw1(i, t, x,w, y, z) = cw1 + acQ (t, z) + Cw1(i′, t, x,w, , z), {i′ = i + 1, i < t}

Notation c refers to the generic cost that can be instantiated to a chosen cost
modelM. Cost equation Cbefore for the first program is composed of the instruc-
tions appearing before the loop is cbefore plus the cost of executing the while loop
Cw0 . The size constraint fixes the initial value of i. Following Def. 3, there are two
equations corresponding to the base case of the loop and executing one iteration,
respectively. Observe that assignable variables in ASs have unknown values in
the ACRS (according to item (6) in Def. 3). Program after has a similar struc-
ture. A ranking function for both loops is t − i which is used to generate the
annotation “//@ decreases t−i;” inserted just before each loop in Fig. 1.

To guarantee soundness of abstract cost analysis, it is mandatory that (i) no
AS in the loop modifies any of the variables that influence loop cost, i.e., they
do not interfere with cost, and (ii) the cost of the AS in the loop is indepen-
dent of the variables modified in the loop. We call the latter ASs cost neutral.
The first requirement is guaranteed by item (6) in Def. 3, because the value of
assignable variables is “forgotten” in the equations. It is implemented, as usual in
static analysis, by using a name generator for fresh variables. If cost depends on
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assignable variables in an AS, then the ACRS will not be solvable (i.e., the analy-
sis returns “unbound cost”). The ACRS in the example contains “ ” in equations
that do not prevent solvability of the system nor its evaluation, because they
do not interfere with cost. However, if we had “forgotten” a cost-relevant vari-
able (such as t), we would be unable to solve or evaluate the equations: without
knowing t the equation guard is not evaluable. Requirement (ii) is ensured by the
following definition ensuring that variables in the cost footprint are not modified
by other statements in the loop.

Definition 4 (Cost neutral AS). Given a loop L, where

– W (L) is the set of variables written by the non-abstract statements of L.
– Abstr(L) is the set of all ASs in loop L.
– Frame(Abstr(L)) is the set of variables assigned by any AS A ∈ Abstr(L).
– CostFootprint(A) is the set of variables which the cost of an A depends on.

L is a loop with cost neutral ASs if, for all A ∈ Abstr(L), it is the case that
(W (L) ∪ Frame(Abstr(L))) ∩ CostFootprint(A) = ∅.

The definition above constitutes a sufficient, but not necessary criterion that
could be tightened by a more expensive analysis. For instance, our framework
easily extends to allow conditions in the cost footprint that the concretizations
of the AS must fulfill. In our example, the cost footprint might include condition
i′ ≥ i, where i′ is the value of i after executing the AS. This permits the abstract
statement to modify i provided it does not decrease its value. Thus, the AS is
not cost neutral, but the upper bound remains sound. The formalization of this
generalization is left to future work.

Example 4. It is easy to check that both loops in Fig. 1 have cost neutral ASs. On
the left: W (L) = {i}, Frame({P,Q}) = {x, y}, CostFootprint(P ) = {t,w}, and
CostFootprint(Q) = {t, z}, so (W (L)∪ Frame({P,Q}))∩CostFootprint(P ) = ∅,
and (W (L)∪Frame({P,Q}))∩CostFootprint(Q) = ∅. The program on the right
is checked analogously.

Given a program P with variables x and ACRS with initial equation Cini(x).
We denote by eval(Cini(x), σ0) the evaluation of the ACRS for a given initial
assignment σ0 of the variables. This is a standard evaluation of recurrence equa-
tions performed by instantiating the right-hand side of the equations with the
values of the variables in σ0 and checking the satisfiability of the size constraints
(if the expression being checked or accumulated contains “ ”, the evaluation re-
turns “unbound”). As usual, the process is repeated until an equation without
calls is reached.

Example 5. Consider the ACRS of the left program in Fig. 1 with variables
(t, x,w, y, z), initial state σ0 = (2, 0, 0, 0, 0), and cost model Minst (thus cbefore,
cBw0

and cw0
take values 1, 1 and 2 respectively). The evaluation of the ACRS

results in eval(Cini(t, x,w, y, z), (2, 0, 0, 0, 0)) = 6 + 2 · acP(2, 0) + 2 · acQ(2, 0).

The following theorem states soundness of the ACRS obtained by applying Def. 3
provided that all loops satisfy Def. 4.
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Theorem 1 (Soundness of ACRS). Let M be a cost model and P an ab-
stract program whose loops satisfy Def. 4. Let cP be the abstract cost of P
defined as in Definition 2. Let Cini be the initial equation for the ACRS ob-
tained by Def. 3. For any initial state of the variables σ0 ∈ Znm , it holds that
cP(σ0) ≤ eval(Cini(x), σ0).

4.2 From ACRS to Abstract Cost Invariants

Example 5 shows that ACRSs are evaluable for concrete instances. However,
to enable automated QAE, we need to obtain from them closed-form cost in-
variants and postconditions, i.e., non-recursive expressions. We introduce the
novel concept of abstract cost invariant (ACI) that enables automated, induc-
tive proofs over cost in a deductive verification system. The crucial difference to
(non-inductive) cost postconditions as inferred by existing cost analyzers is that
ACIs can be proven inductively for each loop iteration. Hence, they integrate
naturally into deductive verification systems that use loop invariants [21].

In contrast to ACIs, postconditions provide a bound for the cost after exe-
cution of the whole loop they refer to. Typically, a postcondition bound for a
loop has the form max iter ∗max cost+max base, where max iter is the max-
imal number of iterations of the loop, max cost is the maximal cost of any loop
iteration, and max base is the maximal cost of executing the loop with no itera-
tions. Instead, an ACI has the form growth ∗max cost+max base, where growth
counts how many times the loop has been executed and hence provides a bound
after each loop iteration. The challenge is to design an automated technique that
infers growth. We propose to obtain it from the ranking function:

Definition 5 (Growth). Given a loop with ranking function F = c+
∑

i ai ·vi,
where c and vi are the constant and variable parts of the function, respectively,
and ai are constant coefficients. If we denote with v0i the initial value of variable
vi before entering the loop, then growth =

∑
i ai ·

(
v0i − vi

)
.

Example 6. We look at four simple loops with ranking function decreases and
the growth inferred automatically by applying Def. 5:

int i = 0;
while (i < t)

i ++;

int i = t;
while (i > 0)

i−−;

int i = 0;
while (i < t)

i += 2;

int i = t;
while (i > 0)

i −= 2;

decreases t− i
growth i

decreases i
growth t− i

decreases t−i+1
2

growth i
2

decreases i+1
2

growth t−i
2

We can now define the concept of ACI that relies on abstract cost relations
defined in Sect. 4.1 and growth as defined above.

Definition 6 (Abstract Cost Invariant). Given an ACRS as in Def. 3
and its growth as in Def. 5, an abstract cost invariant is defined as follows:

cinv(x) = CB
max+growth ·

(∑n
j=1 acj

(
cj,1, . . . , cj,hcj

)
+
∑m

i=1 CNi
max
)

where CB
max

stands for the maximal value that the expression CB can take under the constraints
ϕB, and CNi

max the maximal value of CNi under ϕI . We generate the annotation
“//@ cost invariant cinv(x);”.



14 Elvira Albert, Reiner Hähnle, Alicia Merayo, and Dominic Steinhöfel

To obtain the maximal cost of a cost expression under a set of constraints,
we use existing maximization procedures [5].

From Def. 6 we obtain ACIs as closed-form abstract cost expressions of the
form abexpr = cexpr | ac | abexpr1 + abexpr2 | abexpr1 ∗ abexpr2 where
ac represents an abstract cost function as defined in Sect. 3.1 and cexpr is a
concrete cost expression. The definition above yields linear bounds, however, the
extension to infer postconditions in the subsequent section leads to polynomial
expressions (of arbitrary degree).4

Example 7 (Abstract Cost Invariant). Consider the first loop in Example 6
(where growth = i) with the following frame and footprint:

//@ assignable j; accessible i , t , j , k; cost footprint k;

UsingMinstr, the evaluation of the loop guard and the increase of i both have
unit cost, so the ACRS is:

C(i, t, j, k) = 1 {i ≥ t}
C(i, t, j, k) = acP (k) + 2 + C(i′, t, , k) {i′ = i + 1, i < t}

The value of the assignable variable j in the recursive call is “forgotten” (item (6)
in Def. 3), but this information loss does not affect solvability of the ACRS. We
obtain the following ACI: “//@ cost invariant 1 + i ∗ (2 + acP(k));”.

Example 8 (Upper Bound Abstract Cost
Invariant). Sometimes an ACI is over-
approximating cost, resulting in an upper
bound ACI. To illustrate this, we add an
instruction that creates an array of non-
constant size “i” to the program in Exam-
ple 7 and measure memory consumption
instead of instruction count.

while (i < t) {
a = new int[i];
//@ assignable j;
//@ accessible i , t , j , a, k;
//@ cost footprint k;
\abstract statement P;
i ++;

}

The resulting ACRS thus accumulates cost “i” at each iteration, plus the
memory consumed by the abstract statement:

C(i, t, j, k) = 0, {i ≥ t}
C(i, t, j, k) = acP (k) + i + C(i′, t, , k), {i′ = i + 1, i < t}

Now, maximizing the expression CN1 = i under {i′ = i + 1, i < t} results in
CN1

max = t−1 and upper bound ACI “//@ cost invariant i ∗ (t − 1 + acP(k));”.

Let cL denote the abstract cost of executing a loop L (in analogy to cP in
Def. 2, but considering only loop L rather than the whole program P). We denote
by cI the portion of the cost in cL up to the execution of iteration I.

Proposition 1. Let L be a loop with variables x satisfying Def. 4, cinv(x) its
ACI, and σI ∈ Znm be the store after performing iteration I of L. Then the
following holds: (1) cinv(x) is true on entering the loop; (2) cI(σI) ≤ cinv(σI).

4 As our approach is based on a recurrences-based framework [39] that works for
exponential and logarithmic expressions, the results in this section generalize to
these expressions. However, the AE deductive verification system is not able to deal
with them automatically at the moment, so we skip these expressions in our account.
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4.3 From Cost Invariants to Postconditions

To handle programs with nested loops and to prove relational properties it is
necessary to infer cost postconditions for abstract programs. For nested loops the
cost postcondition states the abstract cost after complete execution of the inner
loop and it is used to compute the invariant of the outer loop. For relational
properties, the cost postconditions of two abstract programs are compared. Cost
postconditions for concrete programs are obtained by upper bound solvers (e.g.,
COSTA [3], CoFloCo [16], AProVE [17]) that compute max iter , an upper bound
on the number of iterations that a loop performs. To do so, one relies on ranking
functions. We do this as well, but generalize the computation of postconditions
to abstract programs. The cost postcondition is obtained by substituting growth

by max iter in the formula of cinv(x) in Def. 6 as follows.

Definition 7 (Cost Postcondition). Let L be a loop, max iter be an upper
bound on the number of iterations of L. Given the ACRS for L in Def. 3, we
infer the cost postcondition for L as

post(x) = CB
max + max iter(x) ·

(∑n
j=1 acj

(
cj,1, . . . , cj,hcj

)
+
∑m

i=1 CNi
max
)

and generate the annotation “ //@ assert cost == post(x);”.

To infer the postcondition for a complete abstract program, we take the sum
of all cost postconditions of its top-level loops plus the cost of the non-iterative
fragments. Fig. 1 shows the cost postconditions for our running example obtained
by replacing the growth i of the invariant with the bound t on the loop iterations
and requiring t ≥ 0. The generation of inductive ACIs for nested loops uses the
cost postcondition of inner loops to compute the invariants of the outer ones.
The following theorem states soundness of cost postconditions:

Theorem 2. Let L be a loop over variables x satisfying Def. 4 and post(x) its
cost postcondition. Let σL ∈ Zmn be the store upon termination of L. Then
cL(σL) ≤ post(σL).

5 Experimental Evaluation

We implemented a prototype of our approach downloadable from https://tinyurl.
com/qae-impl (including required libraries). The archive contains the bench-
marks of this section and additional examples as well as build and usage instruc-
tions. The prototype is a command-line implementation backed by an existing
cost analysis library for (non-abstract) Java bytecode as well as the deductive
verification system KeY [2] including the AE framework [37,38]. Our implemen-
tation consists of three components: (1) An extension of a cost analyzer (written
in Python) to handle abstract Java programs, (2) a conversion tool (written
in Java) translating the output of the analyzer to a set of input files for KeY,
(3) a bash script orchestrating the whole tool chain, specifically, the interplay
between item (1), item (2) and the two libraries. In case of a failed certification
attempt, our script offers the choice to open the generated proof in KeY for fur-
ther debugging. In total, our implementation (excluding the libraries) consists

https://tinyurl.com/qae-impl
https://tinyurl.com/qae-impl
https://tinyurl.com/qae-impl
https://tinyurl.com/qae-impl
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of 1,802 lines of Python, 703 lines of Java, and 389 lines of bash code (without
blank lines and comments).

To assess effectiveness and efficiency of our approach, we used our QAE im-
plementation to analyze seven typical code optimization rules using cost models
Minstr (rows “1∗”–“6∗” in Table 1) andMheap (rows “7∗”). WhileMinstr counts
the number of instructions,Mheap measures heap consumption. The first column
identifies the benchmark (“a” refers to the original program, “b” to the trans-
formed one), the second P refers to the kind of proven cost result (asymptotic
“a”, exact “e”, upper “u”), column three shows the inferred growth function for
each loop in the program (separated by “,” if there are two or more loops), in
the fourth column we list the cost postcondition obtained by the analysis (ex-
pressions indicating the number of loop iterations are highlighted), and columns
five to eight display performance metrics. Time tcost, given in milliseconds, is
the time needed to perform the cost analysis. The proof generation time tproof
is given in seconds. We also display the time tcheck needed for checking integrity
of an already generated proof certificate. Finally, sproof is the size of the gener-
ated KeY proof in terms of number of proof steps. Even though the time needed
for certification is significantly higher than for cost analysis (which is to be ex-
pected), each analysis can be performed within one minute. The time to check
a proof certificate amounts to approximately one fourth to one third of the time
needed to generate it. We stress that all analyses are fully automatic.

We briefly describe the nature of each experiment: 1 is a loop unrolling trans-
formation duplicating the body of a loop: each copy of the body is put inside an
if -statement conditioned by the loop guard. Here, we had to switch to asymptotic
cost invariants: The cost analyzer over-approximates the number of iterations
of the unrolled loop, since there are different possible control flows in the body.
This was automatically detected by the certifier which failed to find a proof when
exact cost invariants are conjectured and succeeds with asymptotic ones. 2 is the
CodeMotion example from Sect. 2. The result reflects the cost decrease in the
sense that less instructions need to be executed by the transformed program. 3
implements a LoopTiling optimization at compiler level in which a single loop
with n ·m iterations is transformed into two nested loops, an outer one looping
until n and an inner one until m. Since our cost analyzer only handles linear
size expressions, the first program is written using an auxiliary parameter t that
is then instantiated to value n · m. 4 is a SplitLoop transformation splitting a
loop with two independent parts into two separate loops. We prove that this
transformation does not affect the cost up to a constant factor. 5 is an opti-
mization combining two loops with the same body structure into one loop. 6 is
a three loops example, one nested and one simple. The optimization combines
the bodies of the outer loop in the nested structure and the simple loop. 7 is
an array optimization, where an array declaration is moved in front of a loop,
initializing it with an auxiliary parameter that is the sum of all the initial sizes.



Certified Abstract Cost Analysis 17

P
Cost analysis results tcost tproof tcheck sproof

Growth Postcondition [ms] [s] [s] #nodes

1a a i t·acP(x) 45.0 12.9 4.3 1,784

1b a i t·acP(x) 53.4 23.8 5.0 3,472

2a e i 2+t·(7 + acP(t, w) + acQ(t, z)) 50.0 23.3 5.7 3,692

2b e i 3 + acP(t, w)+t·(6 + acQ(t, z)) 42.0 19.7 5.7 3,243

3a e i 2+t·(6 + acP(k)) 49.1 18.7 5.1 2,821

3b e i , j 6+n ·m·(6 + acP(k)) 49.5 23.3 5.7 3,794

4a e i + 1 2+(l + 1)·(7 + acQ1(t, w) + acQ2(t, z)) 49.5 23.8 5.7 3,933

4b e i + 1 , i + 1 2+(l + 1)·(12 + acQ1(t, w) + acQ2(t, z)) 48.5 29.4 7.3 5,137

5a e i , j 2+n·(6 + acP(y))+m·(6 + acP(y)) 55.1 25.3 7.1 4,795

5b e i 2+(n + m)·(8 + acP(y)) 48.2 14.1 4.7 2,492

6a e k , j , n− i 6+n·(m·(6 + acP(y))+n·(5 + acQ(y)) 49.8 32.0 8.1 7,078

6b e k , j 7+n·(m·(6 + acP(y)) + acQ(y)) 49.6 24.9 6.4 4,995

7a u i− 1 (t− 1)·(4 · (t− 1) + acP(y)) 51.2 15.6 5.3 2,578

7b u i− 1 4 ·m+(t− 1)·acP(y) 43.3 13.0 4.2 1,793

Table 1: Results of the experiments.

6 Related Work

The present paper builds on the original AE framework [37,38], which we extend
to Quantitative AE. At the moment no other approach or tool is able to analyze
and certify the cost of schematic programs, specifically relational properties, so
a direct comparison is impossible.

Cost Analysis. There are many resource analysis tools, including: [20], based
on introducing counters and inferring loop invariants; [23], based on an analysis
over the depth of functional programs formalized by means of type systems.
Approaches that bound the number of execution steps include [19,29], working at
the level of compilers. Systems such as AProVE [17] analyze the complexity of
Java programs by transforming them to integer transition systems; COSTA [3]
and CoFloCo [16] are based on the generation of cost recurrence equations
from which upper bounds can be inferred. That is also the basis of the approach
we pursue to infer abstract upper bounds in Sect. 4.1, hence our technique can be
viewed as a generalization of these systems. Approaches based on type systems
could also be generalized to work on abstract programs by introducing abstract
cost as in Sect. 4.1.

For our work it is crucial to use ranking functions to infer growth of cost
invariants. Ranking functions were used to generate bounds on the number of
loop iterations in several systems, but none used them to define growth: [10]
obtain runtime complexity bounds via symbolic representation from ranking
functions, likewise PUBS [3], Loopus [40], and ABC [8]. PUBS analyses all
loop transitions at once, Loopus uses an iterative procedure where bounds are
propagated from inner to outer loops, ABC deals with nested, but not sequential
loops. In our work, when inferring upper bounds, we solve all transitions at once
and handle nested as well as sequential loops.
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Certification. Several general-purpose deductive software verification [21] tools
exist, including VeryFast [34], Why [15], Dafny [28], KIV [33], and KeY [2].
We use KeY, the currently only system to implement AE. Interactive proof as-
sistants like Isabelle [31] or Coq [7] also support more or less expressive abstract
program fragments, but lack full automation. There are dedicated approaches in-
volving schematic programs for specific contexts, like regression verification [18],
compilation [22,26,30] or derived symbolic execution rules [12].

Regarding the combination of deductive verification and cost analysis, the
closest approach to ours is the integration of COSTA and KeY [4] which was
realized for concrete, not abstract programs. They verify upper bounds on the
cost of concrete programs by decomposing them into ranking functions and size
relations which are then verified separately. Here we use the novel concept of
cost invariant that allows verification of quantitative properties without decom-
position. Paper [4] deals only with the global number of iterations as is common
in worst-case cost analysis. Our cost invariants are designed to be inductive and
propagate cost through all loop iterations. Radiček et al. [32] devise a formal
framework for analyzing the relative cost of different programs (or the same pro-
gram with different inputs). Compared to our approach, they target purely func-
tional programs extended with monads representing cost, while we work with an
industrial programming language. Moreover, we generally reason about the cost
of transformations, not of a transformation applied to one particular program.

7 Conclusion and Future Work

We presented the first approach to analyze the cost of schematic programs with
placeholders. We can infer and verify cost bounds for a potentially infinite class
of programs once and for all. In particular, for the first time, it is possible to
analyze and prove changes in efficiency caused by program transformations—for
all input programs. Our approach supports exact and asymptotic cost and a
configurable cost model. We implemented a tool chain based on a cost analyzer
and a program verifier which analyzes and formally certifies abstract cost bounds
in a fully automated manner. Certification is essential, because only the verifier
can determine whether the bounds inferred by the cost analyzer are exact.

Our work required the new concept of an (abstract) cost invariant. This is
interesting in itself, because (i) it renders the analysis of nested loops modular
and (ii) provides an interface to backends (such as verifiers) that characterizes
the cost of code in iterations.

Obvious future work involves extending the analyzed target language. Cost
analysis and deductive verification (including AE) are already possible for a large
Java fragment [3, 37]. More interesting—and more challenging—is the analysis
of program transformations that parallelize code. The extension to larger classes
of cost functions, such as logarithmic or exponential, could be realized by inte-
grating non-linear SMT solvers into the tool chain.
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7. Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Devel-
opment - Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2004.

8. Régis Blanc, Thomas A. Henzinger, Thibaud Hottelier, and Laura Kovács. ABC:
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21. Reiner Hähnle and Marieke Huisman. Deductive verification: from pen-and-paper
proofs to industrial tools. In Bernhard Steffen and Gerhard Woeginger, editors,
Computing and Software Science: State of the Art and Perspectives, volume 10000
of LNCS, pages 345–373. Springer, 2019.
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