
How to Prove the Correctness of Refactoring Rules
(with Abstract Execution)

15th International Conference on integrated Formal

Methods—Refactoring Tutorials, Bergen, Norway

Dominic Steinhöfel and Reiner Hähnle

steinhoefel@cs.tu-darmstadt.de

December 2nd, 2019

Software Engineering Group, Computer Science Department, TU Darmstadt

This work was funded by the Hessian LOEWE initiative within the Software-Factory 4.0 project.

How to Get Away with Refactoring
(with Abstract Execution)

15th International Conference on integrated Formal

Methods—Refactoring Tutorials, Bergen, Norway

Dominic Steinhöfel and Reiner Hähnle

steinhoefel@cs.tu-darmstadt.de

December 2nd, 2019

Software Engineering Group, Computer Science Department, TU Darmstadt

This work was funded by the Hessian LOEWE initiative within the Software-Factory 4.0 project.

Our research is motivated by the observa-
tion that common refactorings can easily,
and accidentally, change a program’s be-
haviour.

A.M. Eilertsen, A.H. Bagge, and V. Stolz: Safer Refactorings. ISoLA 2017

For each refactoring we characterize
the preconditions that make it seman-
tics-preserving. Most preconditions
are not mentioned in the literature.

D. Steinhöfel and R. Hähnle: Abstract Execution. FM 2019

5/49

Goal: Equivalence of Programs Before and After Refactoring

6/49

Goal: Equivalence of Programs Before and After Refactoring

7/49

 Automatic, Statement-Level Relational
Program Verification ToolREFINITY

key-project.org/REFINITY/

1st DEMO

9/49

Going Abstract – Properties of Many Programs

?

10/49

Testing Show correctness of one program for
one set of inputs

Program Proving Show correctness of one program for
all possible inputs

Abstract
Program Proving

Show correctness of all programs
(matching a pattern) for all possible
inputs.

Hierarchy of Verification Approaches

Abstract Programs =
Programs with Abstract Program Elements (APEs)

(Abstract Statements & Abstract Expressions)

11/49

How to show the correctness of an abstract program?

12/49

How to show the correctness of an abstract program?

13/49

Abstract Program Proofs by Structural Induction

● Frequently practiced in

– pen-and-paper proofs and

– interactive theorem provers like Isabelle and Coq (e.g.,
CompCert and CakeML)

● Precise second-order reasoning over program properties

● ...but very hard to automate!

Automatic Reasoning about Universal
Properties of Abstract Programs in an

Industrial Programming Language

Goal

Abstract Execution

Our Solution

Specification of Abstract Programs +
Symbolic Execution +

Abstract State Changes

Abstract Execution

Specification of Abstract Programs +
Symbolic Execution +

Abstract State Changes

Abstract Execution

18/49

Specification of Abstract Statements, Expressions & Constraints

//@ specs
\abstract_statement Ident;

//@ specs
\abstract_expression Type Ident

/*@ ae_constraint
 @ formula;
 @*/
{;}

Dynamic Frames

frame = what the program may change

footprint = what the program may read

Dynamic Frames are abstract sets of locations (or
set-valued specification variables).

20/49

Specification of Frames & Footprints

//@ assignable x, someAbstrFrame, \hasTo(y);
\abstract_statement P;

if (
 //@ accessible z, someAbstrFootprint;
 \abstract_expression boolean e
) { … }

/*@ ae_constraint
 @ \disjoint(someAbstrFrame, z) && …; */
{;}

21/49

Specification of Abrupt Completion Conditions

//@ exceptional_behavior requires condition;
//@ return_behavior requires condition;
//@ break_behavior requires condition;
//@ continue_behavior requires condition;
\abstract_statement Ident;

22/49

Mutually Exclusive Abrupt Completion Behavior

/*@ ae_constraint
 @ \mutex(throwsP(\value(footprintP)),
 @ throwsQ(\value(footprintQ)));
 @*/
{;}

/*@ accessible footprintP;
 @ exceptional_behavior requires
 @ throwsP(\value(footprintP)); */
\abstract_statement P;

/*@ accessible footprintQ;
 @ exceptional_behavior requires
 @ throwsQ(\value(footprintQ)); */
\abstract_statement Q;

23/49

Specifying the Post Condition

if (
 /*@ normal_behavior ensures
 @ \result <==>
 @ throwsP(\value(footprintP));
 @*/
 \abstract_expression boolean e
) {

println(“P threw Exception!”);
} else {

println(“P did not throw Exception!”);
}

2nd DEMO

Specification of Abstract Programs +
Symbolic Execution +

Abstract State Changes

Abstract Execution

26/49

Symbolic Execution of an Assignment (in JavaDL)

27/49

Symbolic Execution of a Conditional Statement (in JavaDL)

28/49

Abstract Execution of an Abstract Statement

29/49

Abstract Execution of an Abstract Expression

Specification of Abstract Programs +
Symbolic Execution +

Abstract State Changes

Abstract Execution

31/49

We use all the existing rules for (concrete) updates...

32/49

...and adapt the “drop update” rules.

33/49

...and adapt the “drop update” rules.

34/49

...and adapt the “drop update” rules.

35/49

Special Case: “\hasTo” Locations
(1) “Outsourcing” Concrete Updates

36/49

Special Case: “\hasTo” Locations
(2) Stronger Simplifications

REFINITY and
How to Prove the Correctness

of Refactoring Rules

38/49

Analyzing and Proving Refactoring Techniques
with REFINITY and Abstract Execution: Methodology

1. Create refactoring models: Two abstract programs
(before / after refactoring) with minimal specification

2. Load proof obligation (“before refactoring ⇔ after
refactoring”) generated by REFINITY into KeY

3. Start automatic proof

1. Proof closed ⇒ Modeled refactoring correct

2. Open goals ⇒ Inspect proof, maybe adapt model

39/49

Generation of Proof Obligations

// ...
\problem {
 !_objUnderTest = null
 & disjoint(singletonPV(_result),relevant)
 & disjoint(singletonPV(_exc),relevant)
 & ...
 & {_result:=null||_exc:=null}
 !\<{ try {
 _result = _objUnderTest.left()@Problem;
 } catch (Throwable t) { _exc = t; }
 }\> !_P(value(singletonPV(_result))〈value(singletonPV(_result))〉∘ 〉∘
 value(singletonPV(_exc))〈value(singletonPV(_result))〉∘ 〉∘
 value(relevant))〈value(singletonPV(_result))〉∘ 〉
 & {_result:=null||_exc:=null}
 !\<{ try {
 _result = _objUnderTest.right()@Problem;
 } catch (Throwable t) { _exc = t; }
 }\> !_Q(value(singletonPV(_result))〈value(singletonPV(_result))〉∘ 〉∘
 value(singletonPV(_exc))〈value(singletonPV(_result))〉∘ 〉∘
 value(relevant))〈value(singletonPV(_result))〉∘ 〉
 -> (\exists Seq _res1;
 (\exists Seq _res2; (
 _P(_res1) & _Q(_res2) & (_res1=_res2))))
}

⇝

40/49

Proof Inspection: Imprecise I/O Specifications

41/49

Proof Inspection: Missing Abrupt Completion Specifications

42/49

Proving Refactoring Techniques: Results

● Proved correctness of models for 8 refactorings:
(1) Consolidate Duplicate Conditional Fragments (four variants),
(2) Decompose Conditional, (3) Extract Method, (4) Replace Exception with
Test, (5) Move Statements to Callers, (6) Slide Statements, (7) Split Loop,
(8) Remove Control Flag

● Elicitation of non-trivial behavioral restrictions not
mentioned in literature for 10 of 11 studied models

3rd DEMO

It's your turn!

Your Task

Find constraints under which the a given
refactoring technique is correct.

Prove correctness of an abstract program
model for the refactoring, which should

be as general as possible.

...using REFINITY (of course)

45/49

1st Suggestion: Replace Exception with Test

z = 0;

try {
z = 42;
x = x / y;

} catch (ArithmeticException e) {
x = Integer.MAX_VALUE;

}

z = 0;

if (y != 0) {
z = 42;
x = x / y;

} else {
x = Integer.MAX_VALUE;

}

46/49

2nd Suggestion: Slide Statements

doSomethingInteresting(arg);
int boringVar = 17;

int boringVar = 17;
doSomethingInteresting(arg);

47/49

If-Bored-Suggestion: Extract Method

int x = 17;

int y = 1;
int z = x + 1;
while (z --> 1) {

y *= z;
}

int result = y/2;

int x = 17;
int y = factorial(x);
int result = y/2;

// …

private int factorial(int x) {
int y = 1;
int z = x + 1;
while (z --> 1) {

y *= z;
}
return y;

}

Free Program Variable
(“int x”)

Abstract Statement: \abstract_statement P;
Abstract Expression: \abstract_expression int e;

Frame: //@ assignable frameP;
Footprint: //@ accessible footprintP;
HasTo: //@ assignable \hasTo(x), …;
Frame Constraints: //@ ae_constraint \disjoint(…, …);

Binding Abrupt Completion of APE:
//@ return_behavior requires false;
/*@ exceptional_behavior
 @ requires throwsExcP(\value(footprintP)); */

Behavior Constraints:
/*@ ae_constraint \mutex(
 @ throwsExcE(\value(footprintE)),
 @ returnsP(\value(footprintP));

Specifying Post Condition for Abstract Statements and Expressions:
//@ normal_behavior ensures \result == true <==> …;

Specifying Result Relation:
JavaDL Syntax: !\result_1[1] = null | \result_1[2] = 2*\result_2[3]
Returned Results: \result_1[0], \result_2[0]
Thrown Exceptions: \result_1[1], \result_2[1]
Relevant Locations: \result_1[2], \result_2[2], \result_1[3], …

“as” + Ctrl+Shift+Space
“aexp” +

Ctrl+Shift+Space

Abstract Location Set
(“footprintP”)

“aec” + Ctrl+Shift+Space

Abstract Predicate
(“throwsExcP(any)”)

Attention: No JML

“disj” + Ctrl+Shift+Space

“mut” + Ctrl+Shift+Space

● Abstract Execution:
Automatic proofs of abstract programs

● Relational verification tool for AE

● Specification of frame/footprint
based on Dynamic Frames

● Core Idea: 2nd-order Skolemization

● Implemented for Java in the KeY framework

● Suitable for analyzing and proving soundness
of statement-level refactoring techniques

● Several collaborations based on Abstract Execution
planned or already started

\abstract_statement P;

//@ assignable frameP;

REFINITY



